Признак равенства прямоугольных треугольников : Если гипотенуза и катет одного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие прямоугольные треугольники равны.
Объяснение:
Обозначим вторую точку пересечения ОВ с окружностью -Д.
∠ВАД и ∠ВСД-вписанные опираются на полуокружность( гр.мерой 180) , т.к. ВД диаметр .Значит они равняются половине дуги на которую опираются, т.е ∠ВАД =∠ВСД=90.
Прямоугольные треугольники ΔВАД= ΔВСД по катету и гипотенузе :гипотенуза ВД-общая, катеты АВ=ВС по условию.
Т.к. треугольники равны, то в равных треугольниках соответственные элементы равны: значит ∠1=∠2
Признак равенства прямоугольных треугольников : Если гипотенуза и катет одного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие прямоугольные треугольники равны.
Объяснение:
Обозначим вторую точку пересечения ОВ с окружностью -Д.
∠ВАД и ∠ВСД-вписанные опираются на полуокружность( гр.мерой 180) , т.к. ВД диаметр .Значит они равняются половине дуги на которую опираются, т.е ∠ВАД =∠ВСД=90.
Прямоугольные треугольники ΔВАД= ΔВСД по катету и гипотенузе :гипотенуза ВД-общая, катеты АВ=ВС по условию.
Т.к. треугольники равны, то в равных треугольниках соответственные элементы равны: значит ∠1=∠2
1) Сторона параллелограмма равна 21 см, а высота, проведённая к ней, 15 см. Найдите площадь параллелограмма.
a = 21 см
h = 15 см
S = ah = 21 · 15 = 315 см²
2) Сторона треугольника равна 5 см, а высота, проведённая к ней, в 2 раза больше стороны. Найти площадь треугольника.
а = 5 см
h = 2a = 2 · 5 = 10 см
S = 1/2 · ah = 1/2 · 5 · 10 = 25 см²
3) В трапеции основания равны 6 и 10 см, а высота равна полусумме длин оснований. Найдите площадь трапеции.
a = 10 см
b = 6 см
h = (a + b)/2 = (6 + 10)/2 = 16/2 = 8 см
S = (a + b)/2 · h = (6 + 10)/2 · 8 = 8 · 8 = 64 см²
4) Стороны параллелограмма равны 6 и 8 см, а угол между ними равен 30 градусам. Найти площадь параллелограмма.
а = 6 см
b = 8 см
α = 30°
S = ab · sinα = 6 · 8 · sin30° = 48 · 1/2 = 24 см²