Три окружности с центрами 01, 02, 03, и радиусами, равными 2 см, 4 см и 6 см, попарно касаются друг друга внешним образом. Най- дите площадь треугольника О1О2О3
Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
Четырехугольник может быть описанным, если суммы противоположных сторон равны. Значит сумма боковых сторон трапеции равна 9-4=13. В равнобедренной трапеции боковые стороны равны. Значит боковая сторона равна 6,5. Высоты, проведенные из тупых углов трапеции, делят большее основание на отрезки 2,5, 4, 2,5. Применим теорему Пифагора к треугольнику, образованному боковой стороной трапеции, её высотой и отрезком большего основания трапеции.. Высота является катетом этого треугольника Н==6 Sтрапеции==39
известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы.
в основании египетский треугольник, т.е. гипотенуза =10
высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10)
h² = 13² - 5² = (13-5)(13+5) = 8*18
h = 4*3 = 12
Применим теорему Пифагора к треугольнику, образованному боковой стороной трапеции, её высотой и отрезком большего основания трапеции.. Высота является катетом этого треугольника
Н==6
Sтрапеции==39