Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом, то около основания такой пирамиды можно описать окружность, а высота, опущенная из вершины на основание, падает в центр описанной около основания окружности AB = BC/sin(∠A) = 20 AC = AB·cos(∠A) = 10·√3 OA = OB = AB/2 = 10 OH⊥BC; OK⊥AC OH = OB·sin(90 - ∠A) = 5·√3 OK = OA·sin(30) = 5 DK = √(OD² + OK²) = 5·√2 DH = √(OD² + OH²) = 10 S(DBC) = (1/2)·BC·DH = 50 S(DAC) = (1/2)·AC·DK = 25√6 S(DAB) = (1/2)·AB·OD = 50 S(бок) = 100 + 25√6
Решение: Пусть имеется прямоугольный треугольник ABC с вписанной окружностью, причем BC -- гипотенуза. Известна длина гипотенузы (12+5 = 17). Известно, что две касательных, проведенных к одной окружности из одной точки, равны. На чертеже видим 3 пары касательных к одной окружности, которые попарно равны. Запишем эти соотношения (сами, сами). Так как длины отрезков гипотенузы известны, то получается, что известны длины отрезков каждого катета. Обозначим длину неизвестных отрезков катетов величиной X. Запишем выражение теоремы Пифагора для этого треугольника с учетом известных величин: BC^2 = AC^2 + AB^2 => 17^2 = (5+x)^2 + (12+x)^2 Раскрываем скобки: 289 = 25 + 10x + x^2 + 144 + 24x + x^2 и получаем квадратное уравнение: 2x^2 + 34x - 60 = 0 сокращаем в 2 раза: x^2 + 17x - 60 = 0 Решаем уравнение: D=b^2-4ac = 289 + 240 = 529 x1,2 = (-b +- sqrt(D) ) / (2a) Отрицательный корень сразу отбрасываем, остается: x = (-17 + 23) / 2 = 3 Окончательно, длины катетов: 12 + 3 = 15 см и 5 + 3 = 8 см. Проверяем выполнение теоремы Пифаогра: 15^2 + 8^2 = 17^2 225+64=289 Равенство выполняется, следовательно, найденное решение верно.решай по подобию этого
Пусть имеется прямоугольный треугольник ABC с вписанной окружностью, причем BC -- гипотенуза.
Известна длина гипотенузы (12+5 = 17). Известно, что две касательных, проведенных к одной окружности из одной точки, равны. На чертеже видим 3 пары касательных к одной окружности, которые попарно равны. Запишем эти соотношения (сами, сами). Так как длины отрезков гипотенузы известны, то получается, что известны длины отрезков каждого катета. Обозначим длину неизвестных отрезков катетов величиной X. Запишем выражение теоремы Пифагора для этого треугольника с учетом известных величин:
BC^2 = AC^2 + AB^2 => 17^2 = (5+x)^2 + (12+x)^2
Раскрываем скобки:
289 = 25 + 10x + x^2 + 144 + 24x + x^2
и получаем квадратное уравнение:
2x^2 + 34x - 60 = 0
сокращаем в 2 раза:
x^2 + 17x - 60 = 0
Решаем уравнение:
D=b^2-4ac = 289 + 240 = 529
x1,2 = (-b +- sqrt(D) ) / (2a)
Отрицательный корень сразу отбрасываем, остается:
x = (-17 + 23) / 2 = 3
Окончательно, длины катетов:
12 + 3 = 15 см и 5 + 3 = 8 см.
Проверяем выполнение теоремы Пифаогра:
15^2 + 8^2 = 17^2
225+64=289
Равенство выполняется, следовательно, найденное решение верно.решай по подобию этого