Трикутник abc - паралельна проекція рівносторонньо- го трикутника . побудуйте проекцію: 1) однієї із середніх ліній трикутника; 2) однієї із бісектрис трикутника.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Так как высоты падают на стороны параллелограмма под углами 90 градусов, то находим угол в образовавшемся четырехугольнике (2 высоты и части сторон): 360 - 90-90-30=150 градусов - один из углов параллелограмма, а таких углов в параллелограмме два- противолежащих. Найдем два других: 360-150-150=60 градусов два других угла, а один угол будет равен 30 градусов. Напротив этих 30 градусов лежат высоты 3 и 5, которые являются катетами в прямоугольном треугольнике, а гипотенуза будет равна двум катетам (по свойству: против угла в 30 градусов лежит катет равный половине гипотенузы). Значит одна из сторон равна 6, а другая по аналогии равна 10, следовательно периметр параллелограмма равен 2*(10+6)=32
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²