Задача в одно действие. Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M; Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM; На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M. Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM; То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA; Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.
1) Строим данный ∠А, на одной из сторон откладываем сторону АВ. Дальше придется рассмотреть различные случаи. 2) Пусть ∠А=90° (фото1). Если отрезок ВС будет короче отрезка АВ, то такой треугольник не существует. Пусть ВС>АВ, тогда циркулем радиуса R=ВС, строим окружность с центром в точке В. Окружность пересечет другую сторону ∠А только один раз в точке С. Одно решение. 3) Пусть ∠А>90°, тупой угол. Снова воспользуемся циркулем. Возможны случаи: ВС<АВ, Решений нет: окружность не пересечет другую сторону ∠А. ВС>АВ, будет одно решение. 4) Пусть ∠.А<90°, острый угол. Тут будут разные случаи в зависимости от длины ВС: а) ВС1⊥АС1, одно решение; б) АС1<ВС3=ВС4<АВ, пара решений ( есть на рис 3: ΔАВС3 и ΔАВС4, у них ВС3=ВС4). в) ВС2≥АВ одно решение на фото. .
Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M;
Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM;
На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M.
Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM;
То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA;
Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.
Дальше придется рассмотреть различные случаи.
2) Пусть ∠А=90° (фото1). Если отрезок ВС будет короче отрезка АВ, то такой треугольник не существует. Пусть ВС>АВ, тогда циркулем радиуса R=ВС, строим окружность с центром в точке В. Окружность пересечет другую сторону ∠А только один раз в точке С. Одно решение.
3) Пусть ∠А>90°, тупой угол. Снова воспользуемся циркулем. Возможны случаи:
ВС<АВ, Решений нет: окружность не пересечет другую сторону ∠А.
ВС>АВ, будет одно решение.
4) Пусть ∠.А<90°, острый угол.
Тут будут разные случаи в зависимости от длины ВС:
а) ВС1⊥АС1, одно решение;
б) АС1<ВС3=ВС4<АВ, пара решений ( есть на рис 3: ΔАВС3 и ΔАВС4, у них ВС3=ВС4).
в) ВС2≥АВ одно решение на фото.
.