Трикутник abc задано координатами його вершин: a(-1; 1 3), b-1 ; 2: 0), c(0: -2: -1). знайдіть зовнішній кут при вершині а. іть будь-ласка! я буду вам всім вдячна!
Имеем угол α = 60°, который образует луч OA с положительной полуосью Ox. Длина отрезка OA = 54. Определи координаты точки A."
Длина отрезка в координатной плоскости определяют по формуле:
Катет, лежащий против угла в 30* равен 1/2 гипотенузы.
ОхА=(1/2)*54=27.
По теореме Пифагора ОуА²=ОА²-ОхА²=54²-27²=2916-729=2187.
ОуА=27√3.
На украинском:
Довжина відрізка в координатній площині визначають за формулою: Катет, що лежить проти кута в 30 * дорівнює 1/2 гіпотенузи. ОхА=(1/2) * 54=27. За теоремою Піфагора ОуА2=ОА2-ОхА2=542-272=2916-729=2187. ОуА=27√3.
1 вариант.
1. OP/PK=MN/NK -теорема Фалеса
NK=PK*MN/OP=8*15/20=6см
2. Так как треугольники подобны, то АВ/А1В1=ВС/В1С1=АС/А1С1
Найдем коэффициент подобия ВС/В1С1=к
к=27/36
к=3/4
Теперь найдем неизвестные стороны
АВ/А1В1=3/4
АВ/28=3/4
4АВ=84
АВ=21см
АС/А1С1=3/4
9/А1С1=3/4
3А1С1=36
А1С1=12см
3. Биссектриса делит угол В пополам. Стороны АМ и МС - пропорционально прилежащие, следовательно треугольники подобны, ну а дальше составляешь пропорцию
АМ/МС = АВ/ВС
12/14 = 30/х
12х = 30*14 = 420
х=35
Ответ: 35
4. Дано:
Δ АВС; АД:ДВ=5:3; ДЕ║АС; АС=16 см.
Найти ДЕ.
Решение:
Δ АВС подобен Δ ДВЕ по 1 признаку подобия.
Следовательно, АВ\ДВ=АС\ДЕ
(5+3)\3=16\ДЕ
ДЕ=16*3:8=6 см
Ответ: 6 см.
5.BD = ВО + OD = 1,5 + 3,5 = 5 см
2 вариант.
1. ЕД=55-АЕ=55-40=15 см.
2. Раз треугольники подобны, то отношения их сходственные сторон равны.
Найдём отношение уже известных сторон:
BC/B1C1 = 22/33 = 2/3
Тогда AB/A1B1 = 2/3
AB/15 = 2/3 => AB = 15/3•2 = 10 см.
AC/A1C1 = 2/3
14/A1C1 = 2/3 => A1C1 = 14/2•3 = 21 см.
Ответ: A1C1 = 21 см; AB = 10 см.
3. Биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.
Тогда получаем следующее соотношение: EB/AB=EC/AC
Отсюда EB=EC*AB/AC=6*32/15=12 cm.
4. Дано:
Δ АВС; АЕ:ЕС=2:7; FЕ║АС; EF=21 см.
Найти AB.
Решение:
Δ АВС подобен Δ FCЕ по 1 признаку подобия.
Следовательно, АВ\EF=АС\CЕ
AB\21=(2+7)\7
AB=21*9:7=27 см
Ответ: 27 см.
5. ΔAOD∞ΔCOB^<BCA=<DAC и <CBD=<ADB-накрест лежащие
AD:BC=AO:OC
AD:(42-AD)=10:4
4AD=420-10AD
4AD+10AD=420
14AD=420
AD=420:14
AD=30
BC=42-AD=42-30=12
Ответ AD=30см,ВС=12см
Объяснение:
Имеем угол α = 60°, который образует луч OA с положительной полуосью Ox. Длина отрезка OA = 54. Определи координаты точки A."
Длина отрезка в координатной плоскости определяют по формуле:
Катет, лежащий против угла в 30* равен 1/2 гипотенузы.
ОхА=(1/2)*54=27.
По теореме Пифагора ОуА²=ОА²-ОхА²=54²-27²=2916-729=2187.
ОуА=27√3.
На украинском:
Довжина відрізка в координатній площині визначають за формулою: Катет, що лежить проти кута в 30 * дорівнює 1/2 гіпотенузи. ОхА=(1/2) * 54=27. За теоремою Піфагора ОуА2=ОА2-ОхА2=542-272=2916-729=2187. ОуА=27√3.
1. OP/PK=MN/NK -теорема Фалеса
NK=PK*MN/OP=8*15/20=6см
2. Так как треугольники подобны, то АВ/А1В1=ВС/В1С1=АС/А1С1
Найдем коэффициент подобия ВС/В1С1=к
к=27/36
к=3/4
Теперь найдем неизвестные стороны
АВ/А1В1=3/4
АВ/28=3/4
4АВ=84
АВ=21см
АС/А1С1=3/4
9/А1С1=3/4
3А1С1=36
А1С1=12см
3. Биссектриса делит угол В пополам. Стороны АМ и МС - пропорционально прилежащие, следовательно треугольники подобны, ну а дальше составляешь пропорцию
АМ/МС = АВ/ВС
12/14 = 30/х
12х = 30*14 = 420
х=35
Ответ: 35
4. Дано:
Δ АВС; АД:ДВ=5:3; ДЕ║АС; АС=16 см.
Найти ДЕ.
Решение:
Δ АВС подобен Δ ДВЕ по 1 признаку подобия.
Следовательно, АВ\ДВ=АС\ДЕ
(5+3)\3=16\ДЕ
ДЕ=16*3:8=6 см
Ответ: 6 см.
5.BD = ВО + OD = 1,5 + 3,5 = 5 см
2 вариант.
1. ЕД=55-АЕ=55-40=15 см.
2. Раз треугольники подобны, то отношения их сходственные сторон равны.
Найдём отношение уже известных сторон:
BC/B1C1 = 22/33 = 2/3
Тогда AB/A1B1 = 2/3
AB/15 = 2/3 => AB = 15/3•2 = 10 см.
AC/A1C1 = 2/3
14/A1C1 = 2/3 => A1C1 = 14/2•3 = 21 см.
Ответ: A1C1 = 21 см; AB = 10 см.
3. Биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.
Тогда получаем следующее соотношение: EB/AB=EC/AC
Отсюда EB=EC*AB/AC=6*32/15=12 cm.
4. Дано:
Δ АВС; АЕ:ЕС=2:7; FЕ║АС; EF=21 см.
Найти AB.
Решение:
Δ АВС подобен Δ FCЕ по 1 признаку подобия.
Следовательно, АВ\EF=АС\CЕ
AB\21=(2+7)\7
AB=21*9:7=27 см
Ответ: 27 см.
5. ΔAOD∞ΔCOB^<BCA=<DAC и <CBD=<ADB-накрест лежащие
AD:BC=AO:OC
AD:(42-AD)=10:4
4AD=420-10AD
4AD+10AD=420
14AD=420
AD=420:14
AD=30
BC=42-AD=42-30=12
Ответ AD=30см,ВС=12см