трикутника у 2 раза більший за другий на 3 на 120 градусів більший за меншого бз них бісектриси ad:be трикутник abs перетинаються в точці о кут а = 78 градусів кут б = 38 градусів знайти кут а о е
Пусть дан ∆АВС, точки О, Р, М – середины сторон АВ, ВС, АС соответственно; АВ=х, ВС=у, АС=a.
Так как ОР – отрезок соединяющий середины двух сторон треугольника, то ОР – средняя линия, следовательно она равна половине третьей стороны. То есть ОР=0,5*АС=0,5а
Так как РМ – отрезок соединяющий середины двух сторон треугольника, то РМ – средняя линия, следовательно она равна половине третьей стороны. То есть РМ=0,5*АВ=0,5х
Так как ОМ – отрезок соединяющий середины двух сторон треугольника, то ОМ – средняя линия, следовательно она равна половине третьей стороны. То есть ОМ=0,5*ВС=0,5*у
Р(∆АВС)=АВ+ВС+АС=х+у+а
Р(∆АВС)=18 см по условию.
Тогда х+у+а=18
Р(∆ОРМ)=ОР+РМ+ОМ=0,5а+0,5х+0,5у=0,5*(а+х+у)
Поставим значение суммы х+у+а в полученное выражение:
Расчет характеристик
Площадь сечения
F = F1 - F2 - F3;
где F1 - площадь прямоугольника 1;
F2 - площадь прямоугольника 2;
F3 - площадь круга 3.
F1 = h1 x b1 = 45 x 60 = 2700 мм²;
F2 = h2 x b2 = 15 x 45 = 675 мм²;
F3 = PI x R32 = PI x 7,5² = 176.715 мм²;
F = 2700 - 675 - 176.715 = 1848.285 мм².
Cтатические моменты
Обозначим начало координат в самой левой нижней точке сечения.
Тогда статический момент сложной фигуры относительно оси Х равен сумме статических моментов простых фигур составляющих эту фигуру.
Sx = Sx1 - Sx2 - Sx3;
где Sx1 - статический момент прямоугольника 1;
Sx2 - статический момент прямоугольника 2;
Sx3 - статический момент круга 3.
Sx1 = F1 x Xc1 = 2700 x 30 = 81000 мм³;
Sx2 = F2 x Xc2 = 675 x 11.25 = 15187.5 мм³;
Sx3 = F3 x Xc3 = 176.715 x 29.9 = 3976.0782 мм³;
Sx = 81000 - 15187.5 - 3976.0782 = 61836.422 мм³.
Cтатический момент сложной фигуры относительно оси Y равен сумме статических моментов простых фигур составляющих эту фигуру.
Sy = Sy1 - Sy2 - Sy3;
где Sy1 - статический момент прямоугольника 1;
Sy2 - статический момент прямоугольника 2;
Sy3 - статический момент круга 3.
Sy1 = F1 x Yc1 = 2700 x 22.5 = 60750 мм³;
Sy2 = F2 x Yc2 = 675 x 7.5 = 5062.5 мм³;
Sy3 = F3 x Yc3 = 176.715 x 30 = 5301.4376 мм³;
Sy = 60750 – 5062.5 - 5301.4376 = 50386.062 мм³.
Центр тяжести
Зная площадь сечения и его статические моменты можно определить координаты центра тяжести по следующим формулам:
Xc=Sx/F, Yc=Sy/F
Xc = 61836.422 : 1848.285 = 33,4561 мм;
Yc = 50386.062 : 1848.285 = 27,260975 мм.
Значения координат получены относительно выбранного начала координат O.
Пусть дан ∆АВС, точки О, Р, М – середины сторон АВ, ВС, АС соответственно; АВ=х, ВС=у, АС=a.
Так как ОР – отрезок соединяющий середины двух сторон треугольника, то ОР – средняя линия, следовательно она равна половине третьей стороны. То есть ОР=0,5*АС=0,5а
Так как РМ – отрезок соединяющий середины двух сторон треугольника, то РМ – средняя линия, следовательно она равна половине третьей стороны. То есть РМ=0,5*АВ=0,5х
Так как ОМ – отрезок соединяющий середины двух сторон треугольника, то ОМ – средняя линия, следовательно она равна половине третьей стороны. То есть ОМ=0,5*ВС=0,5*у
Р(∆АВС)=АВ+ВС+АС=х+у+а
Р(∆АВС)=18 см по условию.
Тогда х+у+а=18
Р(∆ОРМ)=ОР+РМ+ОМ=0,5а+0,5х+0,5у=0,5*(а+х+у)
Поставим значение суммы х+у+а в полученное выражение:
Р(∆ОРМ)=0,5*18=9 см.
ответ: 9 см