Высоты треугольника пересекаются в одной точке, поэтому достаточно найти точку пересечения двух высот.
Чтобы решение было не "на глазок", привяжем систему координат к точке А(0;0). Тогда вершины В(12;12) и С(16;0)
Уравнение прямой, содержащей высоту, проходящую через точку В к стороне АС: x = 12. (1)
Найдем уравнение прямой, содержащей высоту, проходящую через точку А к стороне ВС.
Уравнение прямой ВС: y = kx+b, проходящей через точки В(12;12) и С(16;0) найдем, подставив координаты точек в уравнение : 12 = 12·k +b и 0 = 16·k + b. => k = -3; b = 48. Тогда уравнение прямой ВС принимает вид: y = -3x + 48. Уравнение прямой, перпендикулярной прямой ВС и проходящей через точку А найдем по формуле:
y - ya = k1(x - xa), где k1 = -1/k. То есть
y = x/3. (2)
Координаты пересечения прямых (1) и (2) найдем, подставив (1) в (2):
Y = 4.
Таким образом, точка пересечения О высот треугольника АВС имеет координаты О(12;4) в нашей системе координат или по рисунку: 26.
26.
Объяснение:
Высоты треугольника пересекаются в одной точке, поэтому достаточно найти точку пересечения двух высот.
Чтобы решение было не "на глазок", привяжем систему координат к точке А(0;0). Тогда вершины В(12;12) и С(16;0)
Уравнение прямой, содержащей высоту, проходящую через точку В к стороне АС: x = 12. (1)
Найдем уравнение прямой, содержащей высоту, проходящую через точку А к стороне ВС.
Уравнение прямой ВС: y = kx+b, проходящей через точки В(12;12) и С(16;0) найдем, подставив координаты точек в уравнение : 12 = 12·k +b и 0 = 16·k + b. => k = -3; b = 48. Тогда уравнение прямой ВС принимает вид: y = -3x + 48. Уравнение прямой, перпендикулярной прямой ВС и проходящей через точку А найдем по формуле:
y - ya = k1(x - xa), где k1 = -1/k. То есть
y = x/3. (2)
Координаты пересечения прямых (1) и (2) найдем, подставив (1) в (2):
Y = 4.
Таким образом, точка пересечения О высот треугольника АВС имеет координаты О(12;4) в нашей системе координат или по рисунку: 26.
2 треугольник: <2=70° (т.к треугольник равнобедренный, углы при основании равны) <1= 180°-(70°+70°)=40° (сумма углов треугольника равна 180°
3 треугольник: <1=<2= 45° (по свойству равнобедренного прямоугольного треугольника)
4 треугольник: <1=<2=60° (все углы равностороннего треугольника по 60°)
5 треугольник: <1=<2= 150° : 2=75° (треугольник равнобедр., углы при основании равны; внешний угол треугольника равен сумме двух внутренних, не смежных с ним углов)
6 треугольник: <2= 180° - 40°= 140° (смежный) <1= 180° - (20° + 140°)= 20° (сумма углов треугольника=180°)