. У двох рівнобедрених трикутниках кути при вершині є рівними. Периметр першого трикутника 270 см. Знайдіть його сторони, якщо сторони другого трикутника відносяться як 1 : 4.
Дан вектор а и вектор b. Если от произвольной точки А отложить вектор АВ, равный вектору а, затем от точки В отложим вектор ВС, равный вектору b. Полученный вектор АС - это сумма векторов а и b. Это правило сложения векторов называется правилом треугольника.
Сумма векторов обозначается вектор а + вектор b.
Для любого вектора а справедливо равенство вектор а + нулевой вектор=вектор а.
Правило треугольника можно сформулировать и по другому, если А, В, С - произвольные точки, то вектор АВ + вектор ВС = вектор АС.
Законы сложения векторов. Правило параллелограмма.
Для любых векторов а, b и с справедливы равенства:
1. вектор а + вектор b = вектор b + вектор а (переместительный закон)
2. (вектор а + вектор b)+вектор с = вектор а + (вектор b+ вектор с) (сочетательный закон).
Правило параллелограмма: чтобы сложить неколлинеарные векторы а и b, нужно отложить от какой - нибудь точки А вектор АВ=вектору а и вектор AD=вектору b и построить параллелограмм. Тогда вектор АС = вектор а + вектор b.
Сумма нескольких векторов.
Сложение нескольких векторов производится следующим образом: первый вектор складывается со вторым, затем их сумма складывается с третьим вектором и т. д. Сумма нескольких векторов не зависит от того, в каком порядке они складываются.
Правило многоугольника: если А1,А2,...,Аn - произвольные точки плоскости, то вектор А1А2+вектор А2А3+...+векторАn-1An=вектор А1Аn
Вычитание векторов.
разностью векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Таким образом, вектор а - вектор b = вектор а + вектор (-b).
Вектор -b - противоположный вектор, вектору b. Противоположные вектора - это вектора, которые имеют равные длины, но противоположно направленные.
1. Какие возможны случаи взаимного расположения двух прямых в пространстве?
Прямые могут а) пересекаться, б) быть параллельными, в) быть скрещивающимися.
2. Если две прямые лежат в одной плоскости и не пересекаются, то они параллельны.
3. Всегда ли через две параллельные прямые можно провести плоскость?
Да. Параллельные прямые уже лежит в одной плоскости (по определению). Если взять две точки на одной прямой и одну точку на другой, то по аксиоме через эти три точки проходит единственная плоскость. Значит через две параллельные прямые проходит единственная плоскость.
4. Сформулируйте лемму о пересечении плоскости параллельными прямыми
Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
5. Сформулируйте теорему о плоскости, проходящей через прямую, параллельную другой плоскости.
Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения параллельна данной прямой.
6. Известно, что прямая параллельна плоскости. Параллельна ли она любой прямой лежащей на этой плоскости?
Нет. В плоскости будут прямые, параллельные данной, но будут и скрещивающиеся с ней. (см. рисунок)
Есть 4 вида:
Сумма двух векторов.
Дан вектор а и вектор b. Если от произвольной точки А отложить вектор АВ, равный вектору а, затем от точки В отложим вектор ВС, равный вектору b. Полученный вектор АС - это сумма векторов а и b. Это правило сложения векторов называется правилом треугольника.
Сумма векторов обозначается вектор а + вектор b.
Для любого вектора а справедливо равенство вектор а + нулевой вектор=вектор а.
Правило треугольника можно сформулировать и по другому, если А, В, С - произвольные точки, то вектор АВ + вектор ВС = вектор АС.
Законы сложения векторов. Правило параллелограмма.
Для любых векторов а, b и с справедливы равенства:
1. вектор а + вектор b = вектор b + вектор а (переместительный закон)
2. (вектор а + вектор b)+вектор с = вектор а + (вектор b+ вектор с) (сочетательный закон).
Правило параллелограмма: чтобы сложить неколлинеарные векторы а и b, нужно отложить от какой - нибудь точки А вектор АВ=вектору а и вектор AD=вектору b и построить параллелограмм. Тогда вектор АС = вектор а + вектор b.
Сумма нескольких векторов.
Сложение нескольких векторов производится следующим образом: первый вектор складывается со вторым, затем их сумма складывается с третьим вектором и т. д. Сумма нескольких векторов не зависит от того, в каком порядке они складываются.
Правило многоугольника: если А1,А2,...,Аn - произвольные точки плоскости, то вектор А1А2+вектор А2А3+...+векторАn-1An=вектор А1Аn
Вычитание векторов.
разностью векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Таким образом, вектор а - вектор b = вектор а + вектор (-b).
Вектор -b - противоположный вектор, вектору b. Противоположные вектора - это вектора, которые имеют равные длины, но противоположно направленные.
Обозначается разность: вектор а - вектор b.
Прямые могут а) пересекаться, б) быть параллельными, в) быть скрещивающимися.
2. Если две прямые лежат в одной плоскости и не пересекаются, то они параллельны.
3. Всегда ли через две параллельные прямые можно провести плоскость?
Да. Параллельные прямые уже лежит в одной плоскости (по определению). Если взять две точки на одной прямой и одну точку на другой, то по аксиоме через эти три точки проходит единственная плоскость. Значит через две параллельные прямые проходит единственная плоскость.
4. Сформулируйте лемму о пересечении плоскости параллельными прямыми
Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
5. Сформулируйте теорему о плоскости, проходящей через прямую, параллельную другой плоскости.
Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения параллельна данной прямой.
6. Известно, что прямая параллельна плоскости. Параллельна ли она любой прямой лежащей на этой плоскости?
Нет. В плоскости будут прямые, параллельные данной, но будут и скрещивающиеся с ней. (см. рисунок)