У гранях двогранного кута проведено прямі a і b, паралельні його ребру, на відстані 10 см і 6 см від нього відповідно. Знайдіть величину цього двогранного кути, якщо відстань між прямими a і b дорівнює 14 см
Раз AB - диаметр, то треугольник прямоугольный. Таким образом угол С = 90°. Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°
Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°
S = 336 см²
Объяснение:
Периметр ромба Р = 100 см
Найдём сторону ромба а = 0,25Р = 0,25 · 100 = 25 (см)
Пусть большая диагональ D = 24x, тогда малая диагональ d = 7x
Диагонали ромба перпендикулярны.
Рассмотрим прямоугольный треугольник, образованный половинками диагоналей и стороной ромба.
По теореме Пифагора а² = (0.5D)² + (0.5d)² = 0.25 (D² + d²)
25² = 0.25 · ((24x)² + (7x)²)
2500 = 576x² + 49x²
2500 = 625x²
x² = 4
x = 2
D = 24 · 2 = 48 (cм)
d = 7 · 2 = 14 (см)
Площадь ромба
S = 0.5 D · d = 0.5 · 48 · 14 = 336 (см²)