а В математике его называют «куб».
Рассмотрим это геометрическое тело.

Поверхность куба состоит из квадратов.
У квадрата все стороны равны.
Все квадраты, из которых состоит поверхность куба, одинаковы.
Их называют гранями.
Поэтому куб называют многогранником.
У куба 6 граней.
У каждой грани есть стороны.
Стороны называют ребрами.
У куба 12 ребер.
Каждое ребро относится к двум граням куба.
Так как у квадрата все стороны равны, то и все грани куба имеют одинаковую длину.
Концы ребер называются вершинами.
Каждое ребро соединяет две вершины.
Вершин у куба – 8.
Грань, ребро, вершина – это элементы куба.
В одной вершине сходится 3 ребра, каждая грань имеет 4 соседних грани, у каждой грани – 4 ребра.
Возьмем куб, выполненный из бумаги. Попробуем его развернуть. Получится развертка куба.
Развертка – это выкройка куба.
Она состоит из 6 квадратов, расположенных в таком порядке, что из них можно сложить или склеить модель куба.
Перейдем к практической части.
Как изобразить куб на плоскости, например, на листе бумаги?
Куб – объемный предмет. Если обвести основание куба – получится квадрат. Это не является изображением куба.
Для наглядного изображения куба достаточно показать три его грани, например, верхняя, правая и передняя. Также можно сделать чертеж куба.
Для выполнения чертежа построим сначала переднюю грань, сзади выше и правее - заднюю грань, проведем нижние и верхние ребра боковых граней.
Ребра, которые не видны, изображают пунктирной линией, остальные сплошной линией.
Отметим, что на рисунке и чертеже мы не можем передать реальные размеры всех ребер куба.
Итак, в этом уроке Вы познакомились с геометрическим телом «куб», а также научились его изображать на плоскости.
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Объяснение:
а В математике его называют «куб».
Рассмотрим это геометрическое тело.

Поверхность куба состоит из квадратов.
У квадрата все стороны равны.
Все квадраты, из которых состоит поверхность куба, одинаковы.
Их называют гранями.
Поэтому куб называют многогранником.
У куба 6 граней.

У каждой грани есть стороны.
Стороны называют ребрами.
У куба 12 ребер.
Каждое ребро относится к двум граням куба.
Так как у квадрата все стороны равны, то и все грани куба имеют одинаковую длину.
Концы ребер называются вершинами.
Каждое ребро соединяет две вершины.
Вершин у куба – 8.
Грань, ребро, вершина – это элементы куба.
В одной вершине сходится 3 ребра, каждая грань имеет 4 соседних грани, у каждой грани – 4 ребра.
Возьмем куб, выполненный из бумаги. Попробуем его развернуть. Получится развертка куба.

Развертка – это выкройка куба.
Она состоит из 6 квадратов, расположенных в таком порядке, что из них можно сложить или склеить модель куба.
Перейдем к практической части.
Как изобразить куб на плоскости, например, на листе бумаги?
Куб – объемный предмет. Если обвести основание куба – получится квадрат. Это не является изображением куба.
Для наглядного изображения куба достаточно показать три его грани, например, верхняя, правая и передняя. Также можно сделать чертеж куба.

Для выполнения чертежа построим сначала переднюю грань, сзади выше и правее - заднюю грань, проведем нижние и верхние ребра боковых граней.
Ребра, которые не видны, изображают пунктирной линией, остальные сплошной линией.
Отметим, что на рисунке и чертеже мы не можем передать реальные размеры всех ребер куба.
Итак, в этом уроке Вы познакомились с геометрическим телом «куб», а также научились его изображать на плоскости.
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.
Объяснение:
2. Сформулируйте теоремы, обратные к приведенным ниже. Проверьте, будет
ли верным утверждение, составляющее его содержание.
1) Два перпендикуляра к одной прямой не пересекаются.
2) Если два треугольника равны, то равны и их соответствующие стороны.
3) Если смежные углы равны, то они прямые.
4) Две прямые параллельные порознь третьей, параллельны.