Объяснение: угол ВАД = 120 как в условии, а периметр 48.
Найдём одну сторону ромба для этого периметр поделим на 4 и получим 12. Далее мы ищем острый угол ромба. Он равен 180-120 это одно из свойств ромба,что сумма двух прилежащих углов к стороне ромба равняеться 180. Далее из треугольника АВС. Он равнобедренный т.к у ромба все стороны равны. Мы знаем,что верхний угол 60. Значит два угла при основании (180-60)/2 и это давняеться 60. Мы имеем, что все углы треугольника 60 значит он равносторонен и третья сторона равняеться двум другим.
В тр-ке АВС АС=40 см, ВМ=15 см К, Р и М - точки касания сторон АВ, ВС и АС соответственно. В тр-ке АВМ АМ=АС/2=20 см. по т. Пифагора АВ²=АМ²+ВМ²=20²+15²=625, АВ=25 см. В тр-ке АВМ по теореме косинусов: cosА=(АВ²+АМ²-ВМ²)/(2·АВ·АМ)=(25²+20²-15²)/(2·25·20)=0.8 В тр-ке АКМ по т. косинусов: КМ²=АК²+АМ²-2·АК·АМ·cosA=20²+20²-2·20·20·0.8=160, КМ=РМ=√160=4√10 см - это ответ. В тр-ке АВС: соsВ=(АВ²+ВС²-АС²)/(2·АВ·ВС)=(25²+25²-40²)/(2·25²)=-7/25, В тр-ке ВКР ВК=ВР=АВ-АК=АВ-АМ=25-20=5 см (АМ=АК так как они касательные из одной точки). КР²=ВК²+ВР²-2·ВК·ВР·cosВ=5²+5²-2·5²·(-7/25)=64, КР=8 см - это ответ.
ответ: 12
Объяснение: угол ВАД = 120 как в условии, а периметр 48.
Найдём одну сторону ромба для этого периметр поделим на 4 и получим 12. Далее мы ищем острый угол ромба. Он равен 180-120 это одно из свойств ромба,что сумма двух прилежащих углов к стороне ромба равняеться 180. Далее из треугольника АВС. Он равнобедренный т.к у ромба все стороны равны. Мы знаем,что верхний угол 60. Значит два угла при основании (180-60)/2 и это давняеться 60. Мы имеем, что все углы треугольника 60 значит он равносторонен и третья сторона равняеться двум другим.
В тр-ке АВМ АМ=АС/2=20 см. по т. Пифагора АВ²=АМ²+ВМ²=20²+15²=625,
АВ=25 см.
В тр-ке АВМ по теореме косинусов:
cosА=(АВ²+АМ²-ВМ²)/(2·АВ·АМ)=(25²+20²-15²)/(2·25·20)=0.8
В тр-ке АКМ по т. косинусов:
КМ²=АК²+АМ²-2·АК·АМ·cosA=20²+20²-2·20·20·0.8=160,
КМ=РМ=√160=4√10 см - это ответ.
В тр-ке АВС:
соsВ=(АВ²+ВС²-АС²)/(2·АВ·ВС)=(25²+25²-40²)/(2·25²)=-7/25,
В тр-ке ВКР ВК=ВР=АВ-АК=АВ-АМ=25-20=5 см (АМ=АК так как они касательные из одной точки).
КР²=ВК²+ВР²-2·ВК·ВР·cosВ=5²+5²-2·5²·(-7/25)=64,
КР=8 см - это ответ.