Основание правильной четырехугольной пирамиды - квадрат. Так как углом между наклонной (высота пирамиды) и плоскостью (боковая грань пирамиды) являетс угол между этой наклонной и ее проекцией на плоскость, высота боковой грани (апофема) образует с высотой пирамиды угол 30° (дано). В правильной пирамиде ее вершина проецируется в центр основания (пересечение диагоналей квадрата), расстояние от которого до боковых сторон равно половине стороны квадрата.
Рассмотрим прямоугольный треугольник SOH, образованный апофемой SH (гипотенуза), высотой пирамиды (SO) и половиной стороны основания ОН (катеты). <ОСН=30° (дано).
По Пифагору SO² = SH² - OH².
Так как катет, лежащий против угла 30° равен половине гипотенузы, то SH = 2*OH и тогда SО² = 3*ОН² = 36 см => ОН = 2√3 см.
Сторона основания равна 2*ОН = 4√3, площадь основания равна
Чертим (приблизительно) треугольник ABC со сторонами AC = 4,2, BC = 7 и углом С = 45°.
Опустим высоту BE на сторону АС.
В прямоугольном треугольнике BCE:
∠BEC = 90°
∠BCE = 45°
∠CBE = 180 - 90 - 45 = 45 (°)
Треугольник BCE - прямоугольный равнобедренный с основанием (гипотенузой) BC, боковыми сторонами (катетами) CE = BE
По теореме Пифагора
BC² = CE² + BE²
BC² = 2CE²
(3√2)² = 2CE²
9*2 = 2CE²
CE² = 9
CE = 3 (cм)
BE = 3 (cм)
AC = CE + AE
AE = AC - CE
AE = 7 - 3 = 4 (cм)
В прямоугольном треугольнике ABE:
Катет BE = 3 см
Катет AE = 4 cм
По теореме Пифагора
AB² = BE² + AE²
AB² = 3² + 4² = 9 + 16 = 25
AB = 5 (см)
V = 96 см².
Объяснение:
Основание правильной четырехугольной пирамиды - квадрат. Так как углом между наклонной (высота пирамиды) и плоскостью (боковая грань пирамиды) являетс угол между этой наклонной и ее проекцией на плоскость, высота боковой грани (апофема) образует с высотой пирамиды угол 30° (дано). В правильной пирамиде ее вершина проецируется в центр основания (пересечение диагоналей квадрата), расстояние от которого до боковых сторон равно половине стороны квадрата.
Рассмотрим прямоугольный треугольник SOH, образованный апофемой SH (гипотенуза), высотой пирамиды (SO) и половиной стороны основания ОН (катеты). <ОСН=30° (дано).
По Пифагору SO² = SH² - OH².
Так как катет, лежащий против угла 30° равен половине гипотенузы, то SH = 2*OH и тогда SО² = 3*ОН² = 36 см => ОН = 2√3 см.
Сторона основания равна 2*ОН = 4√3, площадь основания равна
So = (4√3)² = 48 см². Тогда
V = (1/3)*So*H = (1/3)*48*6 = 96 см²