1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.
По теореме косинусов:
с² = a² + b² - 2ab·cos∠C = 4 + 16 - 2 · 2 · 4 · cos∠C
25 = 20 - 16cos∠C
16cos∠C = - 5
cos∠C = - 5/16 = - 0,3125
Так как косинус угла С отрицательный, то угол тупой. По таблице Брадиса находим, что если cosα = 0,3125, то α ≈ 72°, тогда
∠C ≈ 180° - 72° ≈ 108°
a² = b² + c² - 2bc·cos∠A
4 = 14 + 25 - 2 · 4 · 5 · cos∠A
40cos∠A = 35
cos∠A = 35/40 = 7/8 = 0,875
∠А ≈ 29°
Сумма углов треугольника равна 180°, поэтому
∠В = 180° - (∠А + ∠С) ≈ 180° - (29° + 108°) ≈ 43°
Площадь треугольника найдем по формуле:
S = 1/2 ac·sin∠B
sin∠B ≈ 0,682
S ≈ 1/2 · 2 · 5 · 0,682 ≈ 3,41 см²
1. 10 см.
2. BD=AC=10 см.
Объяснение:
Р ABC=AB+BC+AC;
AB=AD+BD; BC=CL+BL; AC=AK+CK;
P AKD=AK+KD+AD;
P BDL=BD+BL+DL;
Замечаем, что KD=CL и DL=KC;
В Р AKD заменим KD на CL;
В P BDL заменяем DL на KC.
Получаем Р AKD + P BDL=AK+CL+AD + DB+BL+KC=10;
AD+DB=AC; CL+BL=BC; FR+CK=AC.
И в итоге Р ABC=10 см.
***
2. Пусть меньший угол равен х. Тогда больший равен 2х.
Знаем, что угол А=90*.
х+2х=90*;
3х=90*;
х=30* - меньший угол;
Больший угол равен 2х=2*30=60*.
DA/AC=Sin30*;
AC=DA/Sin30*=5/(1/2)=5*2=10 см.
Так как у прямоугольника диагонали равны, то BD=AC=10 см.
По теореме косинусов:
с² = a² + b² - 2ab·cos∠C = 4 + 16 - 2 · 2 · 4 · cos∠C
25 = 20 - 16cos∠C
16cos∠C = - 5
cos∠C = - 5/16 = - 0,3125
Так как косинус угла С отрицательный, то угол тупой. По таблице Брадиса находим, что если cosα = 0,3125, то α ≈ 72°, тогда
∠C ≈ 180° - 72° ≈ 108°
По теореме косинусов:
a² = b² + c² - 2bc·cos∠A
4 = 14 + 25 - 2 · 4 · 5 · cos∠A
40cos∠A = 35
cos∠A = 35/40 = 7/8 = 0,875
∠А ≈ 29°
Сумма углов треугольника равна 180°, поэтому
∠В = 180° - (∠А + ∠С) ≈ 180° - (29° + 108°) ≈ 43°
Площадь треугольника найдем по формуле:
S = 1/2 ac·sin∠B
sin∠B ≈ 0,682
S ≈ 1/2 · 2 · 5 · 0,682 ≈ 3,41 см²