У кулі проведено переріз, площа якого дорівнює 36π см². Відрізок, що сполучає центр кулі з точкою кола даного перерізу, утворює з площиною перерізу кут 60°. Знайдіть об'єм кулі.
Т.к. у ромба все стороны равны, а периметр это сумма всех сторон, то одна сторона ромба будет равна 48:4, т.е. 12. Площадь ромба равна стороне ромба в квадрате, умноженной на синус угла, т.е. 120 = 12^2sin угла Синус угла равен площадь робма разделить на квадрат стороны, т.е. 120:12^2, т.е. 120:144 По условию угол ромба, который надо найти - острый. Это означает что cos угла =корень(1-sin^2 A)=корень(1-(120\144)^2)= (1-120:144) (1+120:144) = (1-5:6) (1+5:6) = (1:6)* (11:6) = 11:36 По сновному тригонометрическому свойству находим тангенс tg угла=sin угла\cos, т.е. угол=120\144\(11\36)=30:11
X - такое число, что основание равно 12*x, боковая сторона 10*x; (Ну, тогда площадь просто равна S = 10*12*x/2; не зависимо от того, как её считать - через основание или боковую сторону. Можно считать это выражение определением неизвестной x) Высота к основанию 10 делит треугольник на два равных прямоугольных, у каждого из них катеты 6*x и 10, гипотенуза 10*x; Отсюда 10 = 8*x; (ну, сосчитайте по теореме Пифагора, хотя тут проще всё - треугольники получились "египетские", то есть подобные треугольнику со сторонами 3,4,5, коэффициент подобия 2*x) x = 5/4; основание 12*x = 15; боковые стороны 10*x = 25/2; полупериметр p = 25/2 + 15/2 = 20; площадь S = 15*10/2 = 75; r = S/p = 15/4;
Самое занятное, что здесь вообще не надо ничего этого делать. ПО ОПРЕДЕЛЕНИЮ числа x S = 60*x; и p = 16*x; откуда r = S/p = 60/16 = 15/4; :))
Площадь ромба равна стороне ромба в квадрате, умноженной на синус угла, т.е. 120 = 12^2sin угла
Синус угла равен площадь робма разделить на квадрат стороны, т.е.
120:12^2, т.е. 120:144
По условию угол ромба, который надо найти - острый. Это означает что cos угла =корень(1-sin^2 A)=корень(1-(120\144)^2)= (1-120:144) (1+120:144) = (1-5:6) (1+5:6) = (1:6)* (11:6) = 11:36
По сновному тригонометрическому свойству находим тангенс
tg угла=sin угла\cos, т.е.
угол=120\144\(11\36)=30:11
(Ну, тогда площадь просто равна S = 10*12*x/2; не зависимо от того, как её считать - через основание или боковую сторону. Можно считать это выражение определением неизвестной x)
Высота к основанию 10 делит треугольник на два равных прямоугольных, у каждого из них катеты 6*x и 10, гипотенуза 10*x;
Отсюда 10 = 8*x; (ну, сосчитайте по теореме Пифагора, хотя тут проще всё - треугольники получились "египетские", то есть подобные треугольнику со сторонами 3,4,5, коэффициент подобия 2*x)
x = 5/4; основание 12*x = 15; боковые стороны 10*x = 25/2;
полупериметр p = 25/2 + 15/2 = 20; площадь S = 15*10/2 = 75;
r = S/p = 15/4;
Самое занятное, что здесь вообще не надо ничего этого делать.
ПО ОПРЕДЕЛЕНИЮ числа x
S = 60*x; и p = 16*x; откуда r = S/p = 60/16 = 15/4; :))