у меня 5 минут осталось В прямоугольном треугольнике АВС с гипотенузой АС проведена биссектриса СК. Отрезок КС вдвое больше отрезка КВ и на 6см меньше катета АВ. Найдите длину катета АВ. (РЕШЕНИЕ С ОБЪЯСНЕНИЕМ ПИШЕМ ПОЛНОСТЬЮ)
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Нарисуем трапецию АВСD. Проведем ее среднюю линию КМ КМ=(АD+ВС):2=10 Средняя линия разделила исходную трапецию на две равнобедренные с равными высотами. Соединим концы стороны СD с серединой К боковой стороны АВ. Трапеция КВСМ - равнобедренная. Высота равнобедренной трапеции делит ее большее основание на два отрезка, больший из которых равен полусумме оснований. КО=(ВС+КМ):2=9 Средняя линия трапеции АВСD разделила ее высоту на два равных отрезка. СО=КН=7:2=3,5 Из прямоугольного треугольника КСО по т.Пифагора найдем СК - один из отрезков, соединяющих концы боковой стороны СD трапеции АВСD с серединой К другой боковой стороны АВ. СК=√ (СО²+ОК²)=√(12,25+81)=√93,25=0,5√ 373 Второй отрезок DК из треугольника КНD по т.Пифагора: DК=√(НДD²+КН²)=√(121+12,25)=0,5√533
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Проведем ее среднюю линию КМ
КМ=(АD+ВС):2=10
Средняя линия разделила исходную трапецию на две равнобедренные с равными высотами.
Соединим концы стороны СD с серединой К боковой стороны АВ.
Трапеция КВСМ - равнобедренная.
Высота равнобедренной трапеции делит ее большее основание на два отрезка, больший из которых равен полусумме оснований.
КО=(ВС+КМ):2=9
Средняя линия трапеции АВСD разделила ее высоту на два равных отрезка. СО=КН=7:2=3,5
Из прямоугольного треугольника КСО по т.Пифагора найдем СК - один из отрезков, соединяющих концы боковой стороны СD трапеции АВСD с серединой К другой боковой стороны АВ.
СК=√ (СО²+ОК²)=√(12,25+81)=√93,25=0,5√ 373
Второй отрезок DК из треугольника КНD по т.Пифагора:
DК=√(НДD²+КН²)=√(121+12,25)=0,5√533