1) Если в треугольнике биссектриса ВК является ещё и высотой, то этот треугольник равнобедренный и АВ=ВС. Р(АВК)=16 , Р(ВКС)= Р(АВК) , так как ΔАВК=ΔВКС по двум сторонам и углу между ними (АВ=ВС , ВК - общая , ∠АВК=∠СВК) Р(АВС)=Р(АВК)+Р(ВСК)-2*ВК=2*Р(АВК)-2*5=2*16-10=22
Объяснение:
1) a) C1D
b) AB + AD + AA1 = AB + BC + CC1 = AC + CC1 = AC1
c) B1C - AD = B1C - B1C1 = C1C
d) |DC1|² = 32 + 32 = 64
|DC1| = 8
2) а) ВА + ВС + ВВ1 + D1A = BA
б) BB1 + CD + A1D1 + D1B = BB (здесь как не заменяй вектора, получается ВВ)
а) AB + CC1 + A1D1 + C1A = AA (тоже самое)
б) AB + AA1 + AD + C1D = AD
3) а) CC1 = AA1 ÷ 12см
СВ = DA = 8 см
СD = BA = 9 см
б) |DC1|² = DD1 + D1C1 = DD1 + DC = 144 + 81 = 225
|DC1| = 15 см
|DB|² = DA + AB = 81 + 64 = 145
|DB| = корень из 145
|DB1|² = AD + BB1 = AD + DD1 = 144 + 64 = 208
|DB1| = 4 корень 13
Р(АВК)=16 , Р(ВКС)= Р(АВК) , так как ΔАВК=ΔВКС по двум сторонам и углу между ними (АВ=ВС , ВК - общая , ∠АВК=∠СВК)
Р(АВС)=Р(АВК)+Р(ВСК)-2*ВК=2*Р(АВК)-2*5=2*16-10=22
2) ΔDEF: ДК - биссектриса ⇒ ∠КDЕ=∠КDF=68°:2=34°
∠F=180°-(∠EDF+∠DEF)=180°-(68°+44°)=68°
ΔDKF: ∠DKF=180°-(∠KDF+∠DFK)=180°-(34°+68°)=78°
3) Точки, лежащие на серединном перпендикуляре к отрезку, равноудалены от концов этого отрезка ⇒ DC=DB=4 см.
АВ=AD+DB=AD+4 ⇒ AD=AB-4=7-4=3 (см) .