Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
По условию, вd=11.3 см, и он является катетом в прямоуг. треугольнике bdc. гипотенуза этого треугольника (bd) в 2 раза меньше катета=> по свойству прямоугольного треугольника если катет в 2 раза меньше гипотенузы то острый угол напротив этого катета равен 30 градусам. то есть > с равен 30 градусам. так как авс равнобедренный, углы при основании равны то есть < а=< с=30 градусов. мы знаем, что сумма углов треугольника равна 180. тогда < а=180-30-30=120 градусов. ответ: < вас=30 < вса=30 < авс=120
15 ед. изм.³
Объяснение:
Условие задачи.
Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
80 * 3/16 = 5 * 3 = 15 единиц измерения³.
ответ: 15 ед. изм.³