Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC
Объяснение: Автор задания не совсем удачно обозначил центры вписанной и описанной окружностей. Обычно центр вписанной окружности - это точка I, центр описанной - точка O.
С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан) и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.
Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.
В пирамиду ЕАВС вписан шар. ОК=ОМ=R, ∠ЕРМ=60°. В тр-ке ЕРМ ОК=ОМ, ОК⊥ЕМ, ОМ⊥РМ, значит РО - биссектриса. В тр-ке РОМ РМ=ОМ/tg30=R√3. В тр-ке ЕРМ ЕР=РМ/cos60=2R√3. Так как грани наклонены к плоскости основания под одним углом, то основание высоты пирамиды лежит в центре вписанной в основание окружности. PM=r. В правильном тр-ке r=a√3/6 ⇒ a=6r/√3=2r√3. a=AB=2РМ√3=2R√3·√3=6R. Площадь боковой поверхности: Sб=Р·l/2=3AB·EP/2=3·6R·2R√3/2=18R√3 - это ответ.
КТ - диаметр окружности на которой лежат точки касания поверхности шара и боковых граней пирамиды. КТ║АВС. ∠КОМ=∠КОР+∠МОР=60+60=120° ⇒ ∠КОД=180-120=60°. В прямоугольном тр-ке КДО КД=ОК·sin60=R√3/2. Длина окружности касания: C=2πr=2π·КД=πR√3 - это ответ.
Объяснение:
Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC
Объяснение: Автор задания не совсем удачно обозначил центры вписанной и описанной окружностей. Обычно центр вписанной окружности - это точка I, центр описанной - точка O.
С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан) и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.
Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.
В тр-ке ЕРМ ОК=ОМ, ОК⊥ЕМ, ОМ⊥РМ, значит РО - биссектриса.
В тр-ке РОМ РМ=ОМ/tg30=R√3.
В тр-ке ЕРМ ЕР=РМ/cos60=2R√3.
Так как грани наклонены к плоскости основания под одним углом, то основание высоты пирамиды лежит в центре вписанной в основание окружности. PM=r.
В правильном тр-ке r=a√3/6 ⇒ a=6r/√3=2r√3.
a=AB=2РМ√3=2R√3·√3=6R.
Площадь боковой поверхности:
Sб=Р·l/2=3AB·EP/2=3·6R·2R√3/2=18R√3 - это ответ.
КТ - диаметр окружности на которой лежат точки касания поверхности шара и боковых граней пирамиды. КТ║АВС.
∠КОМ=∠КОР+∠МОР=60+60=120° ⇒ ∠КОД=180-120=60°.
В прямоугольном тр-ке КДО КД=ОК·sin60=R√3/2.
Длина окружности касания: C=2πr=2π·КД=πR√3 - это ответ.