Прямая, содержащая высоту равнобедренного треугольника, является и его медианой, следовательно, она является срединным перпендикуляром к хорде, и поэтому проходит через центр окружности. Обозначим исходный треугольник через ABC (AC - основание), через M - середину AC, через O - центр окружности. В прямоугольном треугольнике BOC высота CM является средним пропорциональным проекций катетов на гипотенузу, поэтому |MO| = |MC|2/|BM| = 16/3. Из прямоугольного треугольника OCM по теореме Пифагора получаем, что |OC|2 = |OM|2+|MC|2 = (20/3)2. или =
Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Теперь, когда мы нашли все углы, продлим прямую АС (см приложение). На данной прямой отметим точку К (для того, чтобы дать более точное название внешнему углу). ∠ВСК-внешний угол при вершине "С".Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Теперь, когда мы нашли все углы, продлим прямую АС (см приложение). На данной прямой отметим точку К (для того, чтобы дать более точное название внешнему углу). ∠ВСК-внешний угол при вершине "С".∠АСВ и ∠ВСК -смежные, а это значит, что их сумма равна 180°.Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Теперь, когда мы нашли все углы, продлим прямую АС (см приложение). На данной прямой отметим точку К (для того, чтобы дать более точное название внешнему углу). ∠ВСК-внешний угол при вершине "С".∠АСВ и ∠ВСК -смежные, а это значит, что их сумма равна 180°.∠АСВ+∠ВСК=180°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Теперь, когда мы нашли все углы, продлим прямую АС (см приложение). На данной прямой отметим точку К (для того, чтобы дать более точное название внешнему углу). ∠ВСК-внешний угол при вершине "С".∠АСВ и ∠ВСК -смежные, а это значит, что их сумма равна 180°.∠АСВ+∠ВСК=180°∠ВСК=180°-∠АСВДля начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Теперь, когда мы нашли все углы, продлим прямую АС (см приложение). На данной прямой отметим точку К (для того, чтобы дать более точное название внешнему углу). ∠ВСК-внешний угол при вершине "С".∠АСВ и ∠ВСК -смежные, а это значит, что их сумма равна 180°.∠АСВ+∠ВСК=180°∠ВСК=180°-∠АСВ∠ВСК=180°-115°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Теперь, когда мы нашли все углы, продлим прямую АС (см приложение). На данной прямой отметим точку К (для того, чтобы дать более точное название внешнему углу). ∠ВСК-внешний угол при вершине "С".∠АСВ и ∠ВСК -смежные, а это значит, что их сумма равна 180°.∠АСВ+∠ВСК=180°∠ВСК=180°-∠АСВ∠ВСК=180°-115°∠ВСК=65°Для начала найдём неизвестный угол ΔАВС. А именно ∠С.Нам известно, что сумма углов в любом треугольнике равна 180°.∠А+∠В+∠С=180°29°+36°+∠С=180°∠С=180°-29°-36°∠С=180°-65°∠С=115°Теперь, когда мы нашли все углы, продлим прямую АС (см приложение). На данной прямой отметим точку К (для того, чтобы дать более точное название внешнему углу). ∠ВСК-внешний угол при вершине "С".∠АСВ и ∠ВСК -смежные, а это значит, что их сумма равна 180°.∠АСВ+∠ВСК=180°∠ВСК=180°-∠АСВ∠ВСК=180°-115°∠ВСК=65°ответ: 65°.
Прямая, содержащая высоту равнобедренного треугольника, является и его медианой, следовательно, она является срединным перпендикуляром к хорде, и поэтому проходит через центр окружности. Обозначим исходный треугольник через ABC (AC - основание), через M - середину AC, через O - центр окружности. В прямоугольном треугольнике BOC высота CM является средним пропорциональным проекций катетов на гипотенузу, поэтому |MO| = |MC|2/|BM| = 16/3. Из прямоугольного треугольника OCM по теореме Пифагора получаем, что |OC|2 = |OM|2+|MC|2 = (20/3)2. или =