У правильному тетраедрі SABC через основу висоти -точку О - паралельно грані ASC проведено переріз, площа якого дорівнює 4см2 . Знайдіть суму площ усіх граней тетраедра.
Зная, что точка A делит отрезок MK в соотношении 1 к 3, начиная от точки M, запишем: MA/AK=1/3. Тогда, если MA=x, то AK=3x. Кроме этого, так как BC=2AM, то ВС=2x.
Найдем длину отрезка МК: МК=МА+АК=х+3х=4х.
Заметим, что МК=2ВС - основание треугольника в 2 раза больше, чем нгекий отрезок, параллельный ему же и соединяющий боковые стороны. Значит, ВС - средняя линия. Получим следующие равные отрезки: МВ=ВР=РС=СК.
Проведем высоту РН. Так как высота равнобедренного треугольника является также и медианой, то ВН=НС=х.
Рассмотрим треугольники РНВ и ВАМ. В этих треугольниках ВР=МВ; ВН=МА=х; углы В и М равны, так как они являются соответственными при пересечении параллельных прямых ВС и МК секущей МВ. Значит, по двум сторонам и углу между ними эти треугольники равны. В равных треугольниках против равных стороны (в данном случае ВР и МВ) лежат равные углы (в данном случае ВНР и МАВ). Угол ВНР прямой, значит и угол МАВ прямой.
1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О. ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса. ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС. ΔАВО=ΔСВО , значит АВ=ВС=2,7 см. Периметр равен 2(2,7+2,9)=2·5,6=11,2 см. 2) Обозначим длину сторон: х; х-8: х+8; 3(х-8). По условию: х+х-8+х+8+3(х-8)=66, 6х-24=66, 6х=90, х=15. Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см. 3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85° Значит ∠АВD =180-85-30=65°. ∠АВС=∠АВD+∠СВD=65°+65°=130°. Проведем другую диагональ АС. ΔАВС по условию равнобедренный: АВ=ВС. Значит углы при основании равны (180-130):2=25°. ∠САD=85-25=60°. Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD. Углы четырехугольника: 95°, 50°, 130°, 85°.
Найдем длину отрезка МК: МК=МА+АК=х+3х=4х.
Заметим, что МК=2ВС - основание треугольника в 2 раза больше, чем нгекий отрезок, параллельный ему же и соединяющий боковые стороны. Значит, ВС - средняя линия. Получим следующие равные отрезки: МВ=ВР=РС=СК.
Проведем высоту РН. Так как высота равнобедренного треугольника является также и медианой, то ВН=НС=х.
Рассмотрим треугольники РНВ и ВАМ. В этих треугольниках ВР=МВ; ВН=МА=х; углы В и М равны, так как они являются соответственными при пересечении параллельных прямых ВС и МК секущей МВ. Значит, по двум сторонам и углу между ними эти треугольники равны. В равных треугольниках против равных стороны (в данном случае ВР и МВ) лежат равные углы (в данном случае ВНР и МАВ). Угол ВНР прямой, значит и угол МАВ прямой.
ответ: 90 градусов
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85°
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.