Задача решается через подобие треугольников В подобных треугольниках соответствующие стороны пропорциональны. Первый треугольник АВС, где: АВ - это высота столба, АВ=5,4 (м); АС - длина тени столба, ее нужно найти, АС=х (м); угол А=90°, угол В - это угол, под которым падает луч солнца. Второй треугольник КНР, где: КН - это рост человека, КН=170 (см)=1,7 (м); КР - это длина тени человека, КР=1 (м); угол К=90°; угол Н - это угол, под которым падает луч солнца. Прямоугольные треугольники АВС и КНР подобны по острому углу: уг.В=уг.Н; Из подобия треугольников следует соотношение: АВ/КН=АС/КР; 5,4/1,7=х/1; х=3 3/17 (м); ответ: 3 3/17
задача 1
1) исходя из условия, что относятся как 6/6/7 (как длина/ширина/высота), то AB=BC=CD=AD=6, ABCD - квадрат.
2) диагональ нижней и верхней грани, а миенно квадрата, равна "а" корень из 2, где "а" - сторона квадрата. Следовательно AC=6 корней из 2
3) С1С=7
BC=6
из т. Пифагора найдем C1D= корень из85
ответ: AB1=B1C=C1D=A1D=корень из 85
B1D=BD=6корней из 2
задача 2
Скрещивающиеся прямые. Если две прямые не лежат в одной плоскости не параллельны одна другой и не пересекаются, они называются скрещивающимися.
наименьшее ребро 2, а именно СС1=DD1=AA1=BB1=2
скрещивающиеся прямые тут - AD и CD , например, а расстояние и естьAD = 4
задача3
середіна AA1 - L, если не ошибаюсь сечение есть треугольник B1CD