На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.
АВСД - ромб , О - точка пересечения диагоналей. Диагонали ромба разбивают его на 4 равных прямоугольных треугольника. Для нахождения второй диагонали рассмотрим ΔАОВ(угол О=90). Пусть по условию АС=32, тогда АО=32:2=16(см)
Периметр ромба равен 4а ( а-- сторона ). Найдём сторону
Р=4а
4а=80
а=80:4=20
По теореме Пифагора найдём ОВ : ОВ²=АВ²-АО²
ОВ²=20²-16²=400-256=144 ОВ=√144=12, тогда вторая диагональ
ВД=2ВО=24
Теперь по формуле радиуса вписанной в ромб окружности , найдём радиус:
На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.На сторонах кута А відкладені відрізки АВ=4см, ВС=5см, АD=6см, DE=2см. Знайдіть відношення площ трикутника ABD і чотирикутника BCED.
Объяснение:
АВСД - ромб , О - точка пересечения диагоналей. Диагонали ромба разбивают его на 4 равных прямоугольных треугольника. Для нахождения второй диагонали рассмотрим ΔАОВ(угол О=90). Пусть по условию АС=32, тогда АО=32:2=16(см)
Периметр ромба равен 4а ( а-- сторона ). Найдём сторону
Р=4а
4а=80
а=80:4=20
По теореме Пифагора найдём ОВ : ОВ²=АВ²-АО²
ОВ²=20²-16²=400-256=144 ОВ=√144=12, тогда вторая диагональ
ВД=2ВО=24
Теперь по формуле радиуса вписанной в ромб окружности , найдём радиус:
r=d1·d2/4а r=32·24/4·20=768/80=9,6
ответ :9,6 см
Объяснение: