Расстояние между точками с заданными координатами A(x₁; y₁) и B(x₂; y₂) находится по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²)
1. Найдем длину диаметра:
MK = √((14 + 10)² + (12 - 2)²) = √(24² + 10²) = √(576 + 100) = √676 = 26
R = MK/2 = 13
2. На оси абсцисс координата у точки равна 0: у = 0,
5x = 15
x = 3
(3 ; 0)
3. В параллелограмме противоположные стороны равны и параллельны, тогда:
↑АВ = ↑DС
А(х; у).
↑AB = {- 2 - x ; 3 - y}
↑DC = {10 - 7 ; 9 - 0} = {3 ; 9}
- 2 - x = 3 3 - y = 9
x = - 5 y = - 6
A(- 5 ; - 6)
С векторов очень просто, но можно и через формулу расстояния между точками (см. приложение)
4. Пусть искомая точка С(0 ; у).
АС² = СВ²
(- 3 - 0)² + (4 - y)² = (1 - 0)² + (8 - y)²
9 + 16 + y² - 8y = 1 + 64 + y² - 16y
8y = 40
y = 5
C(0 ; 5)
Для прямоугольного треугольника справедлива теорема Пифагора : квадрат гипотенузы равен сумме квадратов катетов.
Треугольник с заданными сторонами является прямоугольным.
25² = 7² + 24²
625 = 49 + 576 = 625
Пусть коэффициент пропорциональности равен k, тогда пропорциональные стороны треугольника будут 7k, 24k, 25k
(25k)² = (7k)² + (24k)²
625k² = 49k² + 576k² ⇒ 625k² = 625k²
Для треугольника со сторонами 7k, 24k, 25k тоже справедлива теорема Пифагора, значит, треугольник является прямоугольным.
Расстояние между точками с заданными координатами A(x₁; y₁) и B(x₂; y₂) находится по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²)
1. Найдем длину диаметра:
MK = √((14 + 10)² + (12 - 2)²) = √(24² + 10²) = √(576 + 100) = √676 = 26
R = MK/2 = 13
2. На оси абсцисс координата у точки равна 0: у = 0,
5x = 15
x = 3
(3 ; 0)
3. В параллелограмме противоположные стороны равны и параллельны, тогда:
↑АВ = ↑DС
А(х; у).
↑AB = {- 2 - x ; 3 - y}
↑DC = {10 - 7 ; 9 - 0} = {3 ; 9}
- 2 - x = 3 3 - y = 9
x = - 5 y = - 6
A(- 5 ; - 6)
С векторов очень просто, но можно и через формулу расстояния между точками (см. приложение)
4. Пусть искомая точка С(0 ; у).
АС² = СВ²
(- 3 - 0)² + (4 - y)² = (1 - 0)² + (8 - y)²
9 + 16 + y² - 8y = 1 + 64 + y² - 16y
8y = 40
y = 5
C(0 ; 5)
Для прямоугольного треугольника справедлива теорема Пифагора : квадрат гипотенузы равен сумме квадратов катетов.
Треугольник с заданными сторонами является прямоугольным.
25² = 7² + 24²
625 = 49 + 576 = 625
Пусть коэффициент пропорциональности равен k, тогда пропорциональные стороны треугольника будут 7k, 24k, 25k
(25k)² = (7k)² + (24k)²
625k² = 49k² + 576k² ⇒ 625k² = 625k²
Для треугольника со сторонами 7k, 24k, 25k тоже справедлива теорема Пифагора, значит, треугольник является прямоугольным.