У рівнобічної трапеції ABCD основи ВС=32 мм і AD=52 мм. Діагоналі АС і BD дорівнюють по 42 мм і перетинаються в точці О. Знайдіть периметри трикутників ВСО і АDО.
Объяснение: проведём вторую диагональ ВД. Пусть точкой их пересечения будет точка О. Так как диагонали ромба, пересекаясь делятся пополам, образуют прямой угол и делят углы пополам, то АО=ОС=½×АС=10,5÷2=5,25см. Рассмотрим ∆АВО. В нём угол АОВ=90°(его образуют диагонали. Зная, что угол В=60°, то угол АВО= 60÷2=30°. В этом треугольнике АОВ, катет АО лежит напротив угла 30°, а значит равен половине гипотенузы АВ. АВ=5,25×2=10,5см. Теперь найдём периметр ромба, зная его сторону:
ответ: Р=42см
Объяснение: проведём вторую диагональ ВД. Пусть точкой их пересечения будет точка О. Так как диагонали ромба, пересекаясь делятся пополам, образуют прямой угол и делят углы пополам, то АО=ОС=½×АС=10,5÷2=5,25см. Рассмотрим ∆АВО. В нём угол АОВ=90°(его образуют диагонали. Зная, что угол В=60°, то угол АВО= 60÷2=30°. В этом треугольнике АОВ, катет АО лежит напротив угла 30°, а значит равен половине гипотенузы АВ. АВ=5,25×2=10,5см. Теперь найдём периметр ромба, зная его сторону:
Р=10,5×4=42см; Р=42см
Объяснение:
(x+2)(x+3)(x+8)(x+12)=4x
(x + 2)(x + 12)(x + 3)(x + 8) = 4x2
x⁴ + 25x³ + 202x² + 600x + 576 = 4x²
x⁴ + 25x³ + 202x² + 600x + 576 - 4x² = 4x² - 4x ²
x⁴ + 25x³ + 198x² + 600x + 576 = 0
(x + 4)(x + 6)(x2 + 15x + 24) = 0
x + 4 = 0 или x + 6 = 0 или x² + 15x + 24 = 0
x₁=-4; x₂=-6; x₃=(-15 - √129)/2; x₄=(-15 + √129)/2
ответ: x₁=-4; x₂=-6; x₃=(-15 - √129)/2; x₄=(-15 + √129)/2
(12x-1)(6x-1)(4x-1)(3x-1)=5 |*4
(12x−1)(12x−2)(12x−3)(12x−4)=120,
y=(12x−1),
y(y−1)(y−2)(y−3)=120
(y²−3y)(y²−3y+2)+1=121
(y²−3y)²+2(y²−3y)+1=121
(y²−3y)=t
t²+2t-120=0
t₁=-12 t₂=10
y²−3y+12=0(нет корней) или y²−3y-10=0
y₁=-2 y₂=5
12x−1=-2
x₁=-1/12
12x−1=5
x₂=0.5
ответ: x₁=-1/12; x₂=0.5