У рівнобедрений трикутник АВС (АВ = ВС) вписано коло, яке дотикається до його сторін АВ, ВС, АС у точках К, М, L відповідно. ВК = 3см. Периметр трикутника АВС дорівнює 34 см. Знайти сторони трикутника АВС
Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
6√3
Объяснение:
Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².