У рівнобедреному трикутнику ABK з основою AB про- ведено медіану КМ. Периметр трикутника АВК дорів- нює 16 дм, а периметр трикутника КМВ дорівнює 12 дм. Знайдіть KM.
Пусть в треугольнике АВС стороны АВ=4 см, ВС=6 см, АС=8 см. Достроим треугольник АВС до параллелограмма АВКС и проведём диагональ АС. Сторона ВС в этом параллелограмме является второй диагональю. Диагонали пересекаются в точке М, которая делит их пополам. ВМ=СМ и АМ=КМ.
В параллелограмме сумма квадратов всех сторон равна сумме квадратов диагоналей. ⇒ АВ²+ВК²+КС²+АС²=АК²+ВС² ⇒2•(16≠64)=36+АК² ⇒ АК²=124, откуда АК=2√31. Медиана к ВС – половина АК и АМ =√31 см простой, вычисления несложные. Медиану к ВА аналогичным можете найти из параллелограмма АТВС, медиану к АС – из параллелограмма АВСЕ.
Медиану треугольника, стороны которого известны, можно найти и по формуле М=[√(2а*+2b*-с*)]:2, где а и b - стороны, между которыми медиана проходит, с - сторона, к которой медиана проведена.
∠MKP = 180 - ∠NKP (смежные)
Если угол ∠NKP - острый, то смежный с ним (∠MKP) будет тупым.
Рассмотрим ΔMKP
Если один из углов треугольника тупой, то два остальных - острые.
==> ∠K - тупой, ∠M и ∠P - острые
Против большего угла лежит большая сторона
Естественно, тупой угол больше острого.
∠K лежит против стороны MP, ∠M лежит против стороны KP
И т. к. ∠K - тупой, против него будет лежать большая сторона MP,
∠M - острый, против него будет лежать сторона поменьше
==> KP < MP
Ч. т. д.
Пусть в треугольнике АВС стороны АВ=4 см, ВС=6 см, АС=8 см. Достроим треугольник АВС до параллелограмма АВКС и проведём диагональ АС. Сторона ВС в этом параллелограмме является второй диагональю. Диагонали пересекаются в точке М, которая делит их пополам. ВМ=СМ и АМ=КМ.
В параллелограмме сумма квадратов всех сторон равна сумме квадратов диагоналей. ⇒ АВ²+ВК²+КС²+АС²=АК²+ВС² ⇒2•(16≠64)=36+АК² ⇒ АК²=124, откуда АК=2√31. Медиана к ВС – половина АК и АМ =√31 см простой, вычисления несложные. Медиану к ВА аналогичным можете найти из параллелограмма АТВС, медиану к АС – из параллелограмма АВСЕ.
Медиану треугольника, стороны которого известны, можно найти и по формуле М=[√(2а*+2b*-с*)]:2, где а и b - стороны, между которыми медиана проходит, с - сторона, к которой медиана проведена.