у рівнобедреному трикутнику, площа якого 32 см2, через середину гіпотенузи провели відрізки, паралельні катетам. доведіть, що утворений чотирикутник-квадрат та знайдіть його площу
Две параллельные прямые (назовём их а и b) задают плоскость Г (гамма), то есть a и b € Г. Тогда плоскость Г пересекает плоскости А(альфа) и В(бетта) по прямым АБ и А1Б1 соотвественно. По свойству номер 1 параллельных плоскостей (А//В-по усл):"Если 2 параллельные плоскости пересечены третьей, то линии их пересечения параллельны". То есть АБ//А1Б1. Теперь рассмотрим фигуру А1АББ1. В ней АБ//А1Б1(что мы уже доказали) и АА1//ББ1(по условию). Значит, фигура А1АББ1-параллелограмм по определению(противоположные стороны попарно параллельны). В параллелограмме противоположные стороны равны-это одно из его свойств. Тогда АБ=А1Б1(они противоположные)=8 см. ответ:8 см.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Теперь рассмотрим фигуру А1АББ1. В ней АБ//А1Б1(что мы уже доказали) и АА1//ББ1(по условию). Значит, фигура А1АББ1-параллелограмм по определению(противоположные стороны попарно параллельны). В параллелограмме противоположные стороны равны-это одно из его свойств. Тогда АБ=А1Б1(они противоположные)=8 см. ответ:8 см.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.