У рівнобедреному трикутнику висота, проведена до бічної сторони , поділяє її на відрізки 8 см і 2 см, починаючи від вершини кута між бічними сторонами. Знайти площу трикутника. 1) 64 см2 2) 78 см2 3) 60 см2 4) 30 см2
1) Строим данный ∠А, на одной из сторон откладываем сторону АВ. Дальше придется рассмотреть различные случаи. 2) Пусть ∠А=90° (фото1). Если отрезок ВС будет короче отрезка АВ, то такой треугольник не существует. Пусть ВС>АВ, тогда циркулем радиуса R=ВС, строим окружность с центром в точке В. Окружность пересечет другую сторону ∠А только один раз в точке С. Одно решение. 3) Пусть ∠А>90°, тупой угол. Снова воспользуемся циркулем. Возможны случаи: ВС<АВ, Решений нет: окружность не пересечет другую сторону ∠А. ВС>АВ, будет одно решение. 4) Пусть ∠.А<90°, острый угол. Тут будут разные случаи в зависимости от длины ВС: а) ВС1⊥АС1, одно решение; б) АС1<ВС3=ВС4<АВ, пара решений ( есть на рис 3: ΔАВС3 и ΔАВС4, у них ВС3=ВС4). в) ВС2≥АВ одно решение на фото. .
Каждая из сторон нового четырёхугольника - это средняя линия в соответствующем треугольнике, отсечённом диагоналями данного четырёхугольнике, значит новые стороны параллельны диагоналям, значит малый четырёхугольник - параллелограмм (это для справки). Площади малых треугольников, отсечённых средними линиями в треугольниках с диагоналями в основании, равны одной четвёртой площадей этих треугольников (при коэффициенте их подобия k=2, коэффициент подобия их площадей k²=4). Посчитаем площади отсечённых треугольников. Обозначим площади треугольников с основаниями, лежащими на диагонали d₁ как S1 и S2, а треугольников с основаниями на диагонали d₂ как S3 и S4. площадь большого четырёхугольника обозначим S. S=S1+S2 и S=S3+S4. Площади отсечённых треугольников в первой паре: Sотс1=(S1+S2)/4=S/4. Площади отсечённых треугольников во второй паре: Sост2=(S3+S4)/4=S/4. Площади всех отсечённых треугольников: Sост=Sотс1+Sотс2=S/4+S/4=S/2. Итак, площадь малого четырёхугольника: s=S-Sотс=S-S/2=S/2 - это ответ.
Можно немного проще. Площадь произвольного четырёхугольника: S=(1/2)d₁·d₂·sinα, где α - угол между диагоналями. Стороны малого четырёхугольника равны половинам диагоналей (мы это уже доказали). Угол между соответственно параллельными прямыми равны, значит указанный угол между сторонами малого четырёхугольника равен α. Площадь малого четырёхугольника (параллелограмма): s=ab·sinα=(d₁/2)·(d₂/2)·sinα=(1/4)d₁·d₂·sinα=S/2. Всё!
Дальше придется рассмотреть различные случаи.
2) Пусть ∠А=90° (фото1). Если отрезок ВС будет короче отрезка АВ, то такой треугольник не существует. Пусть ВС>АВ, тогда циркулем радиуса R=ВС, строим окружность с центром в точке В. Окружность пересечет другую сторону ∠А только один раз в точке С. Одно решение.
3) Пусть ∠А>90°, тупой угол. Снова воспользуемся циркулем. Возможны случаи:
ВС<АВ, Решений нет: окружность не пересечет другую сторону ∠А.
ВС>АВ, будет одно решение.
4) Пусть ∠.А<90°, острый угол.
Тут будут разные случаи в зависимости от длины ВС:
а) ВС1⊥АС1, одно решение;
б) АС1<ВС3=ВС4<АВ, пара решений ( есть на рис 3: ΔАВС3 и ΔАВС4, у них ВС3=ВС4).
в) ВС2≥АВ одно решение на фото.
.
Площади малых треугольников, отсечённых средними линиями в треугольниках с диагоналями в основании, равны одной четвёртой площадей этих треугольников (при коэффициенте их подобия k=2, коэффициент подобия их площадей k²=4).
Посчитаем площади отсечённых треугольников.
Обозначим площади треугольников с основаниями, лежащими на диагонали d₁ как S1 и S2, а треугольников с основаниями на диагонали d₂ как S3 и S4. площадь большого четырёхугольника обозначим S.
S=S1+S2 и S=S3+S4.
Площади отсечённых треугольников в первой паре: Sотс1=(S1+S2)/4=S/4.
Площади отсечённых треугольников во второй паре: Sост2=(S3+S4)/4=S/4.
Площади всех отсечённых треугольников: Sост=Sотс1+Sотс2=S/4+S/4=S/2.
Итак, площадь малого четырёхугольника: s=S-Sотс=S-S/2=S/2 - это ответ.
Можно немного проще.
Площадь произвольного четырёхугольника: S=(1/2)d₁·d₂·sinα, где α - угол между диагоналями.
Стороны малого четырёхугольника равны половинам диагоналей (мы это уже доказали).
Угол между соответственно параллельными прямыми равны, значит указанный угол между сторонами малого четырёхугольника равен α.
Площадь малого четырёхугольника (параллелограмма): s=ab·sinα=(d₁/2)·(d₂/2)·sinα=(1/4)d₁·d₂·sinα=S/2.
Всё!