В любой правильный многоугольник можно вписать единственную окружность.
Доказательство:
Надо доказать, что существует точка, равноудаленная от сторон многоугольника.
Пусть О - центр окружности, описанной около правильного многоугольника.
Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),
но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.
Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.
В правильном многоугольнике центры вписанной и описанной окружностей совпадают.
Докажем, что эта окружность единственная.
Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.
Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.
Я не знаю, как точно передать свои мысли, но постараюсь передать свое понимание данного вопроса, как могу))) Так вот, функции син., кос., тг., кт., непосредственно связаны с углами, т.е они выражают числовое значение того или иного угла. Поэтому, когда вычисляют числовое значение того или иного угла, с давних пор уже, еще со времен, когда возникли сами понятия синус, косинус и т.п берут единичную окружность, проводят в ней перпендикулярные диаметры, и для облегчения вычислений, берут четвертую часть данной окружности, соединяют концы сторон данного прямого угла—получается прямоугольный треугольник. А между углами прямоугольного треугольника и тригонометрическими функциями есть прямая зависимость, т.е чем больше/меньше тот или иной угол, тем больше/меньше тригонометрическая функция. А связь между углом и его противолежащей стороной простая: при возрастании/убывании угла возрастает/убывает и ее противолежащая сторона. А т.к между тригонометрическими функциями и углами, между углами и сторонами существует прямая зависимость, то мы вправе утверждать, что между тригонометрическими функциями острого угла и сторонами прямоугольного треугольника существует прямая зависимость
В любой правильный многоугольник можно вписать единственную окружность.
Доказательство:
Надо доказать, что существует точка, равноудаленная от сторон многоугольника.
Пусть О - центр окружности, описанной около правильного многоугольника.
Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),
но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.
Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.
В правильном многоугольнике центры вписанной и описанной окружностей совпадают.
Докажем, что эта окружность единственная.
Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.
Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.