11. т.к. АВ⊥ВС, т.к. по условию АВ ⊥(АВС), то ∠АСВ=45°, то АВ=СВ, и 2АВ²=(6√2)²⇒АВ²+36
АD=√(ВD²+АВ²)=√(64+36)=100 дважды по Пифагору. ответ в)10
12. ответ в)4
АС=ВС√2, площадь 32=ВС²⇒ВС =4√2, АС=4√2*√2=8, СС₁⊥(АВС), АС₁-проекция АС на (АВС), тогда ∠САА₁=30°, в Δ САА₁: СС₁=8/2=4/см/- катет против угла в 30°, а он и есть расстояние от ВС до плоскости∝
13. Т.к. DА⊥(АВС), АС- проекция DC на (АВС), и ВС⊥АС по условию, то по теореме о трех перпендикулярах DC⊥BC, и значит, расстояние от точки D до прямой ВС равно DС по Пифагору
11. т.к. АВ⊥ВС, т.к. по условию АВ ⊥(АВС), то ∠АСВ=45°, то АВ=СВ, и 2АВ²=(6√2)²⇒АВ²+36
АD=√(ВD²+АВ²)=√(64+36)=100 дважды по Пифагору. ответ в)10
12. ответ в)4
АС=ВС√2, площадь 32=ВС²⇒ВС =4√2, АС=4√2*√2=8, СС₁⊥(АВС), АС₁-проекция АС на (АВС), тогда ∠САА₁=30°, в Δ САА₁: СС₁=8/2=4/см/- катет против угла в 30°, а он и есть расстояние от ВС до плоскости∝
14. ВD=AB√2=BB₁√2, ΔВDB₁ - прямоугольный. (BD- проекция диагонли B₁D на (АВС), ctg∠B₁DD=BD/BB₁ =BB₁√2/BB₁=√2
верный ответ б) √2
13. Т.к. DА⊥(АВС), АС- проекция DC на (АВС), и ВС⊥АС по условию, то по теореме о трех перпендикулярах DC⊥BC, и значит, расстояние от точки D до прямой ВС равно DС по Пифагору
DC=√(DA²+AC²), АС²=АВ²-ВС²=(225-81)=144; DC=√(144+25)=169=13/см/
ответ а) 13
Объяснение:
1
a)М-середина
х=(5-3)/2=1 y=(-2+4)/2=1 z=(1+7)/2=4
M(1;1;4)
b)5=(x-3)/2⇒x-3=10⇒x=13
-2=(y+4)/2⇒y+4=-4⇒y=-8
1=(z+7)/2⇒z+7=2⇒z=-5
C(13;-8;-5)
2
a+b={1;-4;1}
|a+b|=√1+16+1=√18=3√2
|a|+|b|=√4+36+9+√1+4+4=√49+√9=7+3=10
3
AB=√(1-2)²+(-5-1)²+(0+8)²=√1+36+64=√101
BC=√(8-1)²+(1+5)²+(-4-0)²=√49+36+16=√101
AC=√(8-2)²+(1-1)²+(-4+8)²=√36+0+16=√52=2√13
AB=BC- треугольник равнобедренный
Средняя линия равна 1/2АС=1/2*2√13=√13
Пусть N(x;y;z)- произвольная точка плоскости.
Тогда векторы NM и n - ортогональны.
Условием ортогональности является равенство нулю их скалярного произведения.
Находим координаты векторов.
NM (2-x;3-y;5-z)
n(4;3;2)
Находим их скалярное произведение - это сумма произведений одноименных координат
4(2-х)+3(3-у)+2(5-z)
и приравниваем к нулю
4(2-х)+3(3-у)+2(5-z) =0
или
8-4х+9-3у+10-2z=0
4x+3y+2z-27=0
ответ. 4х+3у+2z-27=0
Подробнее - на -