Решение, я думаю, довольно простое. Не нужны формулы, просто включаем мозги. Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3) но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов у нас n=15+3=18 тогда диагоналей 135 вроде так
Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3)
но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов
у нас n=15+3=18
тогда диагоналей 135
вроде так
Площадь прямоугольного треугольника равна половине произведения его катетов.
Так как периметр равен 90 см, а гипотенуза - 41 см, сумма катетов равна
90-41=49 см.
Пусть один катет равен х, тогда второй 49-х
По т. Пифагора квадрат гипотенузы равен сумме квадратов катетов.
Составим уравнение:
х² +(49² -х² )=41²
После возведения в квадрат и приведения подобных членов ( что сделать не составит труда) получим квадратное уравнение:
2х² -98х+720=0
Разделим для удобства на 2
х² -49х+360=0
Решив это уравнение через дискриминант, получим два корня, т.к. дискриминант больше нуля (равен 961)
х₁=40
х₂=9
S=40*9:2=180 см²