В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
cbnybrjds
cbnybrjds
13.02.2020 22:47 •  Геометрия

У шаховому турнірі двоє учасників вибули, зігравши по три партії кожен, і тому на турнірі було зіграно усього 84 партії. Скільки було учасників спочатку?

Показать ответ
Ответ:
RTF1111
RTF1111
04.05.2020 10:04
Если центр описанной около треугольника окружности лежит внутри треугольника, значит треугольник остроугольный.
Площадь треугольника равна половине произведения его сторон на синус угла между этими сторонами.
В нашем случае S = (1/2)AB*BC*Sinα или 3√3 = 2√3*3*Sinα.
Следовательно, Sinα = (3√3)/6√3 = 1/2.
Итак, угол В в треугольнике АВС равен 30°.  Cos30° = √3/2.
По теореме косинусов находим сторону АС треугольника:
АС = √(АВ²+ВС²-2*АВ*ВС*Cos30) или
√(48+9-2*12√3*√3/2)=√21.
Ну, а радиус описанной около треугольника окружности находится по формуле:  R = a*b*c/4S или в нашем случае R=4√3*3*√21/12√3 = √21.
ответ: радиус описанной около треугольника окружности равен √21.
0,0(0 оценок)
Ответ:
julss11
julss11
07.04.2020 06:19

Формулировка теоремы косинусов

Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение: 

a^{2}= b^{2} + c^{2} -2bc*cos \alpha

Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними.

Доказательство теоремы косинусов

Рассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)

Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD. 
Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что AB = AD + BD

Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b) и угол (α) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике: 

\frac{AD}{AC} =cos \alpha

откуда

AD = AC cos \alpha \\ 
AD = b cos \alpha

Длину стороны BD найдем как разность AB и AD:

BD = AB - AD \\ 
BD = c-b cos \alpha

Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:   
для треугольника BDC 

CD^2 + BD^2 = BC^2

для треугольника ADC 

CD^2 + AD^2 = AC^2

Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую. 

CD^2 = BC^2 - BD^2 \\ 
CD^2 = AC^2 - AD^2

Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений: 

BC^2 - BD^2 = AC^2 - AD^2

Исходя из сделанных ранее вычислений, мы уже знаем что: 

AD = b cos \alpha \\ 
BD = c-b cos \alpha

AC = b (по условию)

А значение стороны BC обозначим как a.  
BC = a  
(Именно его нам и нужно найти)

Получим:

BC^2 - BD^2 = AC^2 - AD^2

Заменим буквенные обозначения сторон на результаты наших вычислений 

a^2 - ( c-b cos \alpha )^2 = b^2 - ( b cos \alpha )^2

перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую 

a^2 = ( c-b cos \alpha )^2 + b^2 - ( b cos \alpha )^2

раскроем скобки

a^2 = b^2 + c ^2 - 2cb cos \alpha + ( b cos \alpha )^2 - ( b cos \alpha )^2

получаем 

a^2 = b^2 + c ^2 - 2bc cos \alpha

Теорема косинусов доказана.

Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.   


  


Теорема косинусов(формулировка,чертеж, запись каждой стороны через другие стороны и выражение косину
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота