Свойство треугольника: Любая сторона треугольника меньше суммы двух других сторон и больше их разности: ( a < b + c,.. a > b – c;.. b < a + c,.. b > a – c; .. c < a + b,.. c > a – b )
Одна из сторон треугольника в два раза больше другой означает, что основание в этом треугольнике является меньшей стороной. В противном случае длина основания была бы равна сумме боковых сторон, и такой треугольник получится "вырожденным". Пусть основание равно х, тогда каждая боковая сторона 2х Периметр равен 2х+2х+х=5х х=55:5=11 см. ( основание) 11*2=22 см - каждая боковая сторона.
Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
( a < b + c,.. a > b – c;.. b < a + c,.. b > a – c; .. c < a + b,.. c > a – b )
Одна из сторон треугольника в два раза больше другой означает, что основание в этом треугольнике является меньшей стороной. В противном случае длина основания была бы равна сумме боковых сторон, и такой треугольник получится "вырожденным".
Пусть основание равно х, тогда каждая боковая сторона 2х
Периметр равен 2х+2х+х=5х
х=55:5=11 см. ( основание)
11*2=22 см - каждая боковая сторона.
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.