Теорема. Площадь параллелограмма равняется произведению его основания на высоту.
ABCD - параллелограмм S - площадь параллелограмма BH и СК - высоты AD - основание параллелограмма ******************************************************************************************** Дан параллелограм ABCD. AB=CD и BC=CD- противоположные стороны параллелограмма. Проведем высоту BH. Получился прямоугольный треугольник ABH. Из вершины С опустим перпендикуляр K. Видим еще один прямоугольный треугольник CDK. Так как противоположные стороны параллелограмма равны, равно как угол A = углу D. Значит, S треугольника ABH= S треугольника СDK. S (ABCK)=S (ABCD) + S (DCK). Надо учесть, что S (ABCK) - S (ABH)+ S (HBCK) Значит, S (ABCD)+S (DCK)=S (ABH)+S (HBCK). Так как S (DCK)=S (ABH), то S (ABCD)= S (HBCK). так как S (ABCD)=S, то S (HBCK) = S S= S (HBCK)=BC*H Так как BC=AD, то S=AD*BH
28*98:3 или полностью: Пусть катеты будут a и b, тогда: Выражение площади 18=1/2 * a * b Теорема Пифагора 12^2=a^2+b^2 Из первого: a*b=36 b=36/a Подставляя во второе: 144=a^2+(36/a)^2 144*a^2=a^4+36^2 a^4-144*a^2+36^2=0 D=144^2-4*36^2=15552=64*81*3 a^2=(144+-8*9*(кореньиз3))/2=72+-36(кореньиз3)= b^2=144-a^2=144-72-+36(кореньиз3)=72-+36(кореньиз3) Теперь округлённо посчитаем стороны: a^2=(72+-36*1,73)=72+-62,35={9,65; 134,35} a={3,11; 11,6} cos A = 3,11/12 = 0,26 A = arccos (0,26) = 75 градусов cos B = 11,6/12 = 0,97 B = arccos (0,97) = 15 градусов
ABCD - параллелограмм
S - площадь параллелограмма
BH и СК - высоты
AD - основание параллелограмма
********************************************************************************************
Дан параллелограм ABCD. AB=CD и BC=CD- противоположные стороны параллелограмма. Проведем высоту BH. Получился прямоугольный треугольник ABH. Из вершины С опустим перпендикуляр K. Видим еще один прямоугольный треугольник CDK. Так как противоположные стороны параллелограмма равны, равно как угол A = углу D. Значит, S треугольника ABH= S треугольника СDK.
S (ABCK)=S (ABCD) + S (DCK). Надо учесть, что S (ABCK) - S (ABH)+ S (HBCK) Значит, S (ABCD)+S (DCK)=S (ABH)+S (HBCK). Так как S (DCK)=S (ABH), то S (ABCD)= S (HBCK).
так как S (ABCD)=S, то S (HBCK) = S
S= S (HBCK)=BC*H
Так как BC=AD, то S=AD*BH
или полностью:
Пусть катеты будут a и b, тогда:
Выражение площади 18=1/2 * a * b
Теорема Пифагора 12^2=a^2+b^2
Из первого:
a*b=36
b=36/a
Подставляя во второе:
144=a^2+(36/a)^2
144*a^2=a^4+36^2
a^4-144*a^2+36^2=0
D=144^2-4*36^2=15552=64*81*3
a^2=(144+-8*9*(кореньиз3))/2=72+-36(кореньиз3)=
b^2=144-a^2=144-72-+36(кореньиз3)=72-+36(кореньиз3)
Теперь округлённо посчитаем стороны:
a^2=(72+-36*1,73)=72+-62,35={9,65; 134,35}
a={3,11; 11,6}
cos A = 3,11/12 = 0,26
A = arccos (0,26) = 75 градусов
cos B = 11,6/12 = 0,97
B = arccos (0,97) = 15 градусов
просто замени числа,