Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
Пусть меньший из данных углов равен х, тогда больший равен 2х. Угол смежный с углом равным х, будет 7у, тогда угол смежный с углом равным 2х, будет 5у.
Смежные углы в сумме равны 180°, тогда получим систему:
Знак системы:
х+7у=180
2х=5у=180
Система:
х=180–7у (Ур 1)
2х+5у=180 (Ур 2)
Подставим значение х из уравнения 1 в уравнение 2, получим:
2(180–7у)+5у=180
360–14у+5у=180
360–180=–5у+14у
9у=180
у=20
Подставим значение у в уравнение 1, получим:
х=180–7*20
х=40
Тогда наменьший из данных углов равен 40°, а другой 40°*2=80°
Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
Пусть меньший из данных углов равен х, тогда больший равен 2х. Угол смежный с углом равным х, будет 7у, тогда угол смежный с углом равным 2х, будет 5у.
Смежные углы в сумме равны 180°, тогда получим систему:
Знак системы:
х+7у=180
2х=5у=180
Система:
х=180–7у (Ур 1)
2х+5у=180 (Ур 2)
Подставим значение х из уравнения 1 в уравнение 2, получим:
2(180–7у)+5у=180
360–14у+5у=180
360–180=–5у+14у
9у=180
у=20
Подставим значение у в уравнение 1, получим:
х=180–7*20
х=40
Тогда наменьший из данных углов равен 40°, а другой 40°*2=80°
ответ: 40° и 80°