Основанием пирамиды является прямоугольный треугольник с катетом а и прилегающим к нему острым углом α. Две боковые грани, содержащие катеты этого треугольника, перпендикулярны плоскости основания, а третья наклонена к ней под углом β. Найдите объем пирамиды.
Пусть в данной пирамиде АВС - основание. угол С=90°, ВС=а, ∠АВС=α, MC⊥(ABC) – высота пирамиды. Угол между АВС и АМВ=β.
Формула объёма пирамиды V=S•H:3
Угол МНС - линейный угол угла между плоскостями основания и грани АМВ и равен углу между перпендикулярами, проведенными к одной точке на АВ.
МН - наклонная, перпендикулярна АВ, СН - её проекция на АВС.⇒ По т. о 3-х перпендикулярах угол СНВ=90°, а СН - высота ∆ АВС
Відповідь:
Основанием пирамиды является прямоугольный треугольник с катетом а и прилегающим к нему острым углом α. Две боковые грани, содержащие катеты этого треугольника, перпендикулярны плоскости основания, а третья наклонена к ней под углом β. Найдите объем пирамиды.
Пусть в данной пирамиде АВС - основание. угол С=90°, ВС=а, ∠АВС=α, MC⊥(ABC) – высота пирамиды. Угол между АВС и АМВ=β.
Формула объёма пирамиды V=S•H:3
Угол МНС - линейный угол угла между плоскостями основания и грани АМВ и равен углу между перпендикулярами, проведенными к одной точке на АВ.
МН - наклонная, перпендикулярна АВ, СН - её проекция на АВС.⇒ По т. о 3-х перпендикулярах угол СНВ=90°, а СН - высота ∆ АВС
S=a•b•sinα:2 ⇒
S(АВС)=AB•BC•sinα:2
АВ=ВС:cosα=a:cosα
S(АВС)=(a:cosα)•a•sinα:2=a²sinα:2cosα
H=MC=CH•tgβ
CH=BC•sinα=a•sinα
H=a•sinα•tgβ
V=(a²•sinα:2cosα)•a•sinα•tgβ:3⇒
Пояснення:
Трапеция ABCD с основанием AD вписана в окружность с центром О.Найдите углы трапеции,если ∠AOD=100°,∠BOC=80° и точка О лежит вне трапеции.
Объяснение:
Вписанная в окружность трапеция является равнобедренной.
Значит АВ=CD стягивают равные дуги → ∪AB=∪CD
∠BOC=80° -центральный → ∪ВС=80°
∠AOD=100°--центральный → ∪АВD=100° ⇒ ∪AB=∪CD= =10°.
∠BAD вписанный и опирается на дугу ∪BCD=∪BC+∪CD=80°+10°=90°.
∠BAD=1/2*90°=45°. Значит ∠СDA=45° и ∠СВA=45° (углы при основании равны )
Сумма углов 4-х угольника 360°. Поэтому ∠АВС=∠ВСD= =135°