В трапецию можно вписать окружность, только если суииа боковых сторон равна сумме оснований. В нашем случае 8см+18см=26см. Значит боковая сторона нашей трапеции равна 13см. Высота трапеции равна диаметру вписанной окружности. Опустим перпендикуляр из верхнего угла на большее основание. Тогда имеем прямоугольный тр-к, образованный боковой стороной, высотой и отрезком большего основания, равным (18-8)/2 = 5. По Пифагору высота у нас равна: √(13²-5²) =√144= 12см. Итак, радиус вписанной окружности = 6.
Опустим перпендикуляр из верхнего угла на большее основание. Тогда имеем прямоугольный тр-к, образованный боковой стороной, высотой и отрезком большего основания, равным (18-8)/2 = 5. По Пифагору высота у нас равна:
√(13²-5²) =√144= 12см. Итак, радиус вписанной окружности = 6.
Рассмотрим треугольник ABC. MN - является его средней линией (по построению), значит, MN || AC.
Рассмотрим треугольник BCD. NP - является его средней линией (по построению), значит, NP || BD.
А так как угол между MN и NP = 90 градусов, то и угол между AC и BD тоже будет = 90 градусов.
AC и BD - являются диагоналями исходного параллелограмма, и они пересекаются под прямым углом, значит, по признаку ромба ABCD - является ромбом.