Ой, ну это легко!) В прямоугольном треугольнике есть такое свойство: Если в прямоугольном треугольнике есть угол в 30 градусов, то катет, лежащий напротив этого угла, равен половине гипотенузы этого треугольника. Также есть признак: Если в прямоугольном треугольнике катет равен половине гипотенузы, то напротив этого катета находится угол, равный 30 градусам! Доказательство: Дано: ∆ ABC, ∠C=90º, ∠A=30º. Доказать: ВС = 1/2АВ Доказательство: 1) Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠B=90º-∠A=90º-30º=60º. 2) Проведем из вершины прямого угла медиану CF. 3) Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то CF = 1/2AB, то есть, CF=AF=BF. 4) Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC. Следовательно, у него углы при основании равны: ∠B=∠BCF=60º. 5) Так как сумма углов треугольника равна 180º, то в треугольнике BFC ∠BFC =180º -(∠B+∠BCF)=60º. 6)Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний. Значит, все его стороны равны и BC=CF=BF=1/2AB. ч.т.д
1. На прямой "а" откладываем отрезок СЕ, равный PQ. 2. От точки С строим угол, равный данному (ясно из рисунка) 3. Радиусом R=P1Q1 проводим окружность с центром в точке С. 4. Из точки Е строим касательную к окружности (С;R). Для этого радиусом, равным 0,5*СЕ проводим окружность с центром в середине О отрезка СЕ. В точке пересечения этой окружности с окружностью (С;R) получаем точку F - искомую точку касания. 5. Через точку Е и точку касания F проводим прямую до пересечения со стороной построенного угла. Получаем точку D. Соединив точки С, Е и D получаем искомый треугольник.
Доказательство: СЕ=PQ. <DCE=<hk по построению. СF - высота треугольника, так как радиус CF=P1Q1 перпендикулярен касательной DE в точке касания.
В прямоугольном треугольнике есть такое свойство: Если в прямоугольном треугольнике есть угол в 30 градусов, то катет, лежащий напротив этого угла, равен половине гипотенузы этого треугольника. Также есть признак: Если в прямоугольном треугольнике катет равен половине гипотенузы, то напротив этого катета находится угол, равный 30 градусам! Доказательство: Дано: ∆ ABC, ∠C=90º, ∠A=30º. Доказать: ВС = 1/2АВ Доказательство: 1) Так как сумма острых углов прямоугольного треугольника равна 90º, то ∠B=90º-∠A=90º-30º=60º. 2) Проведем из вершины прямого угла медиану CF. 3) Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то CF = 1/2AB, то есть, CF=AF=BF. 4) Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC. Следовательно, у него углы при основании равны: ∠B=∠BCF=60º. 5) Так как сумма углов треугольника равна 180º, то в треугольнике BFC ∠BFC =180º -(∠B+∠BCF)=60º. 6)Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний. Значит, все его стороны равны и BC=CF=BF=1/2AB. ч.т.д
2. От точки С строим угол, равный данному (ясно из рисунка)
3. Радиусом R=P1Q1 проводим окружность с центром в точке С.
4. Из точки Е строим касательную к окружности (С;R).
Для этого радиусом, равным 0,5*СЕ проводим окружность с центром в середине О отрезка СЕ. В точке пересечения этой окружности с окружностью (С;R) получаем точку F - искомую точку касания.
5. Через точку Е и точку касания F проводим прямую до пересечения
со стороной построенного угла. Получаем точку D.
Соединив точки С, Е и D получаем искомый треугольник.
Доказательство:
СЕ=PQ. <DCE=<hk по построению.
СF - высота треугольника, так как радиус CF=P1Q1 перпендикулярен
касательной DE в точке касания.