Диагональ куба равна 6 см. Найдите: а) ребро куба; б) косинус угла между диагональю куба и плоскостью одной из его гранейРЕШЕНИЕ ОТ slava191:a) Пусть ребро куба равно = a (a2 + a2) диагональ основания (синенькая) из т. Пифагора a2 + (a2+a2) = 62 3a2=36 a2=12 a=√12=2√3 б) найдем косинус угла между плоскостью основания и диагональю куба. Так как синенькая прямая лежит в плоскости основания, то нам надо найти cos угла между синенькой и красненькой прямой.
d – синенькая прямая d = √a2+a2 = √2a2=√8·3= √24 = 2√6
Построим равнобедренный треугольник АВС с основанием АВ. Проведем высоты АД и ВЕ. Рассмотрим треугольники ACД и BCЕ. AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты). Сумма углов треугольника равна 180 градусам. В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов. В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов. Значит: углы CAД=CBЕ. Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам). Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.
Пусть ребро куба равно = a
(a2 + a2) диагональ основания (синенькая) из т. Пифагора
a2 + (a2+a2) = 62
3a2=36
a2=12
a=√12=2√3
б) найдем косинус угла между плоскостью основания и диагональю куба.
Так как синенькая прямая лежит в плоскости основания, то нам надо найти cos угла между синенькой и красненькой прямой.
d – синенькая прямая
d = √a2+a2 = √2a2=√8·3= √24 = 2√6
m – красненькая прямая
m = 6 (из условия)
cos(α) = d/m = 2√6/6 = √6/3
ответ:
а) 2√3
б) √6/3
зразок
Рассмотрим треугольники ACД и BCЕ.
AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты).
Сумма углов треугольника равна 180 градусам.
В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов.
В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов.
Значит: углы CAД=CBЕ.
Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам).
Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.