У трикутнику ОРК проведено бісектриси з кутів Р і К. Точку їх перетину позначили А. Знайти кут РАК, якщо кут Р дорівнюе 60°, кут К дорівнює 104° до іть будь ласка ів обов'язково з малюнком
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
1) чертим Δ АВС -равносторонний. То есть все стороны одинаковы и равны 18 см. , все углы по 60 градусов; 2) точка В делит сторону АС пополам, то есть АВ1=СВ1=9см. 3) Проводим В1Д // ВС и В1Е // АВ; 4) рассматриваем Δ АВС и Δ АДВ1. Они подобны. Стало быть, все стороны одного пропорциональны сходственным сторонам другого. 5) Сторона АВ1 Δ АДВ1 вдвое меньше стороны АС Δ АВС и равна 18/2=9(см.) ; 6) и сторона В1Д вдвое меньше стороны ВС и равна 18/2=9(см.) ; 7) и сторона АД вдвое меньше стороны АВ и равна 18/2=9(см.) ; 8) Тогда ВД=АВ-АД=18-9=9(см) . 9) В итоге получается, что В1Е =9 см, ВЕ=9см, а сумма всех сторон четырёхугольника ВЕВ1Д равна 4*9=36см. 10 ответ: периметр образовавшегося четырёхугольника равен 36 см.
Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы
Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов)
А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным.
Утверждение доказано.
2) точка В делит сторону АС пополам, то есть АВ1=СВ1=9см.
3) Проводим В1Д // ВС и В1Е // АВ;
4) рассматриваем Δ АВС и Δ АДВ1. Они подобны.
Стало быть, все стороны одного пропорциональны сходственным сторонам другого.
5) Сторона АВ1 Δ АДВ1 вдвое меньше стороны АС Δ АВС и равна 18/2=9(см.) ;
6) и сторона В1Д вдвое меньше стороны ВС и равна 18/2=9(см.) ;
7) и сторона АД вдвое меньше стороны АВ и равна 18/2=9(см.) ;
8) Тогда ВД=АВ-АД=18-9=9(см) .
9) В итоге получается, что В1Е =9 см, ВЕ=9см, а сумма всех сторон четырёхугольника ВЕВ1Д равна 4*9=36см.
10 ответ: периметр образовавшегося четырёхугольника равен 36 см.