Так как треугольник прямоугольный, то <A (см.рисунок во вложении) = 90 - <C = 90 – 60 = 30 градусов. Как известно, в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Таким образом если этот катет, т.е. катет ВС обозначить Х, то гипотенуза т.е. сторона АС =2Х. По теореме Пифагора (АС)^2 = (AB)^2 + (BC)^2. Подставив в это уравнение принятые и известный отрезки имеем (2Х)² = 10² + X², или 4Х²= 10²+ X² или 3Х²= 100. Отсюда Х²= 100/3 и малый катет, т.е. Х = √(100\3) = 10/√3. Площадь прямоугольного треугольника равна половине произведения его катетов. Т.е. S = (АВ*ВС)/2 = 10*10/2√3 = 50/√3
ответ: S=45,84(ед²)
Объяснение:
Проведём ещё высоту АН. Она делит трапецию так на прямоугольный треугольник АВН и прямоугольник ВСДН так, что НД=ВС, а также ВН=СД=4.
Рассмотрим ∆АВН. В нём угол А=30°, а катет ВН, лежащий напротив него равен половине гипотенузы АВ (свойство угла 30°) поэтому АВ=ВС=НД=4×2=8.
Найдём АН по теореме Пифагора:
АН²=АВ²–ВН²=8²–4²=64–16=48
АН=√48=4√3
Тогда АД=АН+НД=4√3+8
Площадь трапеции вычисляется по
формуле:
S=(ВС+АД)÷2×4=8+(8+4√3)×4/2=
=(8+8+4√3)×2=(16+4√3)2=32+8√3(ед²)
Можно так и оставить, а можно вычислить приблизительное значение, вычислив √3. √3≈1,73 - поставим это значение:
32+8√3=32+8×1,73=32+13,84=45,84(ед²)
ПЕРВЫЙ РИСУНОК С ВАШЕГО ДОКУМЕНТА