Уциліндрі паралельно його осі проведено площину, що перетинає нижню основу циліндра по хорді, яку видно з центра цієї основи під кутом α. діагональ утвореного перерізу нахилена до площини основи під кутом β знайдіть площу бічної поверхні та об’єм циліндра, якщо площа його основи дорівнює s. вцилиндрепараллельноего осипроведена плоскость,пересекающаянижнее основаниецилиндра похорде,которая виднаиз центраэтогооснования под угломα. кплоскости основанияпод угломβ,еслиплощадь егооснования равнаs.
Чертеж во вложении.
Из формулы площади круга находим радиус цилиндра::
∆ AOB-равнобедренный (OA=OB-радиусы)
По теореме косинусов
В прямоугольном ∆ AA'B: H=AA'=AB*tg β
Боковая поверхность имеет площадь
Цилиндр имеет объем