Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
Достроим этот треугольник до прямоугольника, чьи стороны будут находиться на контуре клетки.
Рассмотрим треугольник АDB:
Он прямоугольный, значит, по теореме Пифагора:
АВ²= DB² + AD² = 5² + 9² = 25 + 81 = 106
так как нам нужны суммы Квадратов сторон, значит оставляем
Аналогично рассмотрим треугольник ВЕС, угол Е также прямой,
ВС² = ВЕ² + ЕС² = 4² + 5² = 16 + 25 = 41
Рассмотрим треугольник АFC -> угол F прямой,
АС² = АF² + FC² = 9² + 4² = 81 + 16 = 97
Теперь сложим всё:
АВ² + АС² + ВС² = 106+41+97 = 244, если не ошибаюсь