Угол AOB, равный 124 градусов, лучом OC разделен на два угла, разность которых равна 34 градуса. Найдите эти углы. Чему равен угол, образованный лучом OC и биссектрисой угла AOB.
Угол AOB, равный 136 градусов, лучом OC разделен на два угла, градусные меры которых относятся как 3:1. Найдите эти углы. Чему равен угол, образованный лучом OC и биссектрисой угла AOB
40
Объяснение:
Угол EKC = 180 - CKB = 180 - 115 = 65. Как угол смежный углу CKB
Угол KEB = 180 - ACE - EKC = 180 - 90 - 65 = 25. Рассматривался треугольник EKC
Треугольник CBK - равнобедренный, т.к. EC = CB
CBK = KEC = 25
KCB = 180 - CKB - KBC = 180 - 115 - 25 = 40 Рассматривался треугольник CBK
BCM = 90 - KCB = 90 - 40 = 50
CM = EC = CB (т.к. AС - биссектриса равнобедренного треугольника => высота и медиана)
Треугольник CBM равнобедренный
CBM = CMB = (180 - BCM) / 2 = (180 - 50) / 2 = 65
KBA = 180 - CBM - EBC = 180 - 65 - 25 = 90
KAB = 180 - AKB - KBA = 180 - 65 - 90 = 25
EAC = KAB = 25, т.к. AC биссектриса
BEA = 180 - EKA - EAK = 180 - 115 - 25 = 40
ответ: 8 (ед.кв.)
Объяснение: по формуле Герона на самом деле не так сложно, как кажется... иррациональные множители постоянно "попадают" в формулу разность квадратов...
полупериметр =(V17+V41+4)/2
(напишу квадрат площади, т.к. с телефона нет возможности ввести формулы)
S^2=(V17+V41+4)*0.5*(V41+4-V17)*0.5*(V17+4-V41)*0.5*(V17+V41-4)*0.5 =
= (0.5)^4*((V41+4)^2-17)*(17+V(17*41)-4V17 + 4V17+4V41-16 - V(17*41)-41+4V41 =
= (0.5)^4*(41+8V41+16-17)*(8V41-40) =
= (0.5)^4*8^2*(V41-5)*(V41+5) =
= (64/16)*(41-25) = 4*16
S = 2*4 = 8
а если нарисовать треугольник на плоскости в системе координат, то очевидно, что сторона треугольника АВ=4, высота к этой стороне =4, площадь равна половине произведения стороны на высоту, проведенную к этой стороне = 4*4/2 = 8