Угол AOB, равный 1240, лучом OC разделен на два угла, разность которых равна 340. Найдите эти углы. Чему равен угол, образованный лучом OC и биссектрисой угла !
1) надо найти площадь основания, для этого надо знать его радиус r Его определить можно через длину окружности основания, которая равна длине дуги развертки боковой поверхности, она неизвестна-но ее можно найти через радиус R развертки(в конусе это будет образующая) Площадь боковой поверхности S(бок)=piR^2/360*36=piR^2/10=10 piR^2=100 R^2=100/pi R=10/√pi L=2piR/360*60=2piR/10=piR/5=pi*10/(√pi*5)=2√pi-длина окружности основания 2pir=2√pi r=1/√pi S(основания)=pir^2=1 Тогда полная поверхность конуса S=S(осн)+S(бок)=1+10=11 2)при вращении треугольника вокруг катета получится конус с радиусом и высотой а S=pia^2+pia*a√2=pia^2(1+√2) 2a)при вращении вокруг гипотенузы образуется поверхность из двух одинаковых конусных боковых поверхностях с образующими, равными а и радиусом a/√2 S=2S(б)=2*pi*a*a/√2=pia^2√2 2в) на рисунке фигура вращения, она состоит из двух частей ломаная из 2 катетов образует поверхность, равную найденной в предыдущем задании pia^2√2 и осталось найти площадь , образованную вращением гипотенузы-это будет боковая поверхность цилиндра с высотой a√2 и радиусом a/√2 S1=2pi*a/√2*a√2=2pia^2 тогда вся поверхность вращения будет S=2pia^2+pia^2√2=pia^2(2+√2)
Треугольник существует тогда и только тогда, когда сумма длин двух его сторон больше третьей стороны. Т.к. в равнобедренном треугольнике боковые стороны равны, то для него достаточно соблюдения двух условий: а+а>c ⇒ 2a>c a+c>a где а -боковая сторона ; с - основание треугольника Рассмотрим два случая: 1) а=8 см ; с = 4 см 2*8 = 16 > 4 4+8 =12 > 8 данный треугольник существует ⇒ третья сторона = 8 см 2) а=4 ; с = 8 2*4 = 8 = 8 4+8 = 12 > 4 данного треугольника не существует.
Его определить можно через длину окружности основания, которая равна длине дуги развертки боковой поверхности, она неизвестна-но ее можно найти через радиус R развертки(в конусе это будет образующая)
Площадь боковой поверхности S(бок)=piR^2/360*36=piR^2/10=10
piR^2=100
R^2=100/pi
R=10/√pi
L=2piR/360*60=2piR/10=piR/5=pi*10/(√pi*5)=2√pi-длина окружности основания
2pir=2√pi
r=1/√pi
S(основания)=pir^2=1
Тогда полная поверхность конуса S=S(осн)+S(бок)=1+10=11
2)при вращении треугольника вокруг катета получится конус с радиусом и высотой а
S=pia^2+pia*a√2=pia^2(1+√2)
2a)при вращении вокруг гипотенузы образуется поверхность из двух одинаковых конусных боковых поверхностях с образующими, равными а и радиусом a/√2
S=2S(б)=2*pi*a*a/√2=pia^2√2
2в) на рисунке фигура вращения, она состоит из двух частей
ломаная из 2 катетов образует поверхность, равную найденной в предыдущем задании pia^2√2 и осталось найти площадь , образованную вращением гипотенузы-это будет боковая поверхность цилиндра с высотой a√2 и радиусом a/√2
S1=2pi*a/√2*a√2=2pia^2
тогда вся поверхность вращения будет S=2pia^2+pia^2√2=pia^2(2+√2)
Т.к. в равнобедренном треугольнике боковые стороны равны, то для него достаточно соблюдения двух условий:
а+а>c ⇒ 2a>c
a+c>a
где а -боковая сторона ; с - основание треугольника
Рассмотрим два случая:
1) а=8 см ; с = 4 см
2*8 = 16 > 4
4+8 =12 > 8
данный треугольник существует ⇒ третья сторона = 8 см
2) а=4 ; с = 8
2*4 = 8 = 8
4+8 = 12 > 4
данного треугольника не существует.
ответ: 8 см .