Угол между двумя плоскостями равен 30 °. В каждой из плоскостей проведения прямую, параллельную линии их пересечения. Расстояние от одной из этих прямых к линии пересечения плоскостей равна 8 см, а от второй - 2 два корня из3 см.Найдите расстояние между проведенными прямыми.
1) из прямоугольного треугольника выразим длину и ширину через диагональ и известный угол и подставим вформулу периметра
(d sin 39 + d cos 39)=70
d sqrt(2) (sin 39 cos 45 + cos 39 sin 45)=70
d sqrt(2) sin 84 = 70
d=70/( sqrt(2) sin 84 )
теперь нетрудно найти стороны
AB= 31.32
BC = 38.68
2) Построим ромб и опустим высоту OC на сторону AB.
Угол BCA=BAC = 70 Угол OCA=20 - из суммы углов треугольника.
Теперь из прямоугольного треугольника OCA найдем высоту ромба
OC = AC sin 20
OC= 4.79
3) Рисунок - половина решения.
Для двух прямоугольных треугольников распишем соотношение сторон через гипотенузы и углы
AC= AB cos a
AC = AD cos (a-b)
BC= AB sin a
CD = AD sin (a-b)
выразим AD= AB cos a/ cos(a-b)
BD=BC-CD
BD= AB sin a- AB sin(a-b)/cos (a-b) cos a= AB (sin a - tg (a-b) cos a)
или BD=c( sin a - tg(a-b) cos a)
1) По теореме Пифагора:
АВ² = АС² + ВС²
АВ² = 8² + 15² = 64 + 225 = 289
АВ = √289 = 17 см
2) Прямая а и наклонные АВ и АС.
АВ = АС по условию.
В и С - основания наклонных, значит найти надо отрезок ВС.
Пусть АН⊥а, тогда ВН = 16 см - проекция наклонной АВ на прямую а.
ΔАВС равнобедренный, АН - высота и медиана (по свойству равнобедренного треугольника), ⇒
ВС = 2ВН = 2 · 16 = 32 см
3) Доказать: AD + BC < AC + BD
В треугольнике каждая сторона меньше суммы двух других его сторон.
ΔAOD: AD < AO + OD
ΔBOC: BC < BO + OC
Складываем эти неравенства:
AD + BC < AO + OD + BO + OC, ⇒
AD + BC < AC + BD