Угол между плоскостями a и b равен 45 градусам. Точка B лежит в плоскости b на расстоянии 6√2 см от плоскости a. Найдите расстояние от точки B до линии пересечения плоскостей.
1)Задачи на построение пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования - всё это является важной предпосылкой развития пространственного мышления школьников. Эти задачи развивают логическое мышление, геометрическую интуицию.
2)Целесообразно отметить следующие особенности условий задач на построение: в одних задачах данные фигуры могут быть без изменения сущности задачи заменены их мерами. Таковы, например, задачи построить треугольник по стороне, медиане другой стороны и радиусу описанной окружности; построить параллелограмм по его углу и диагоналям.
3)Любые, кроме круга.
4) 1.При циркуля можно измерить любой данный отрезок и отложить такой же от точки на прямой в любую сторону.
2.При циркуля можно провести окружность с центром в любой данной точке и радиусом, равным любому данному отрезку.
5)Не разрешается. Объяснение: Так как про построении используется нелинованное линейка( для соединения точек) и циркуль ( для переноса длины отрезка)
6).(B).(A).(C)
На прямой даны точки В и А. Выставляем раствор циркуля равным отрезку АВ и с центром в точке А проводим дугу до пересечения с прямой на продолжении луча ВА. Точка пересечения С и даст второй конец отрезка ВС в два раза большего, чем АВ.
7)От точки до края круга 2см, а до другого края 10см значит 10-2=диаметр круга=8, а радиус это половина диаметра 8/2=4
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
1)Задачи на построение пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования - всё это является важной предпосылкой развития пространственного мышления школьников. Эти задачи развивают логическое мышление, геометрическую интуицию.
2)Целесообразно отметить следующие особенности условий задач на построение: в одних задачах данные фигуры могут быть без изменения сущности задачи заменены их мерами. Таковы, например, задачи построить треугольник по стороне, медиане другой стороны и радиусу описанной окружности; построить параллелограмм по его углу и диагоналям.
3)Любые, кроме круга.
4) 1.При циркуля можно измерить любой данный отрезок и отложить такой же от точки на прямой в любую сторону.
2.При циркуля можно провести окружность с центром в любой данной точке и радиусом, равным любому данному отрезку.
5)Не разрешается. Объяснение: Так как про построении используется нелинованное линейка( для соединения точек) и циркуль ( для переноса длины отрезка)
6).(B).(A).(C)
На прямой даны точки В и А. Выставляем раствор циркуля равным отрезку АВ и с центром в точке А проводим дугу до пересечения с прямой на продолжении луча ВА. Точка пересечения С и даст второй конец отрезка ВС в два раза большего, чем АВ.
7)От точки до края круга 2см, а до другого края 10см значит 10-2=диаметр круга=8, а радиус это половина диаметра 8/2=4
8)не знаю
9)Допустим: а=3см, b=1,5см (на фото ответ)
10)дано:
а=12 см
b=5 см
а) a+b=17 см
б) a-b=7 см
в) 2а=24 см
г) a+2b=22 см
д) 2a+b=29 см
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301