Т.к треугольник равнобедренный то биссектриса также является медианой, а значит все стороны равны 6*2=12 см. следовательно в треуг-ке АDC сторона AC равна 12 см, а сторона DC по условию 6 см. отсюда можно найти расстояние от вершины А до стороны (прямой) ВС, следовательно нужно найти биссектрису AD по теореме Пифагора: AC в кв=AD в кв + DC в кв. выражаем из этого AD: AD=квадратный корень из разности квадратов сторон AC и DC. AD= корень из 12 в кв - 6 в кв = корень из 144 - 36= корень из 108= 2 корня из 27.
Углы при основании равны, то есть если основание АС, то угол А = углу С.
Так как сумма углов любого треугольника равна 180 гр, то сумма углов А+С = 180-112=68 гр. Угол А=углу С = 68:2=34 гр.
Так как АF- биссектриса, то угол ВАF= углу САF= 34:2=17 гр.
Рассмотрим треуг. АВF, угол В=112 гр, угол ВАF=17 гр., тогда угол ВFА= 180 -112-17=51 гр.
Рассмотрим треуг АНF, угол АНF=90 гр, угол АFН=51 гр, тогда по свойству прямоугольного треугольника НАF= 90-51= 39 гр.
ответ F=51 гр, А=39 гр, Н=90 гр.