Укажите номера верных утверждений:
1) вертикальные углы равны
2) если при пересечении двух прямых третьей прямой внутренние односторонние углы равны 50 и 120, то эти прямые параллельны
3) смежные углы равны
4) если три стороны одного треугольника соответственно равны трем сторонам другого треугольник, то такие треугольники равны.
5) если два угла треугольника равны по 45, то такой треугольник равнобедренный.
сумма всех углов треугольника равна 180 градусам. у нас известны два угла из трех ( b = 60, c = 90 ). поэтому мы можем найти третий угол:
180 - 60 - 90 = 30 ( это угол a )
в есть следующая теорема:
"в прямоугольном треугольнике катет, лежайщий против угла в 30 градусов, равен половине гипотенузы."
в данном треугольнике гипотенузой является ab (так как эта сторона лежит против угла в 90 градусов), катетами являются ac и cb.
из теоремы выше понятно, что ab = 2cb
известно, что ab + bc = 111
теперь выразим ab: ab = 111 - bc
теперь все это запишем в уравнение:
мы знаем, что ab можно выразить двумя способами: ab = 111 - bc и ab = 2cb
поэтому можно их прировнять
ab = ab
или
111 - bc = 2cb
111 = 3cb
cb = 111 / 3
так как ab = 2cb, ab = 2 * 111 / 3 = 74
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
AС = (Сx - Ax; Сy - Ay) = (5 - 1; -2 - (-2)) = (4; 0).
Таким же найдем координаты вектора ВА:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
2) Точка М расположена на отрезке ВС и делит его пополам, следовательно, для поиска координат точки М необходимо определить координаты отрезка ВС и разделить их пополам, то есть:
М = ВС / 2 = (Сx + Bx; Сy + By) / 2 = ((Сx + Bx) / 2; (Сy + By) / 2) = ((5 + 3) / 2; (-2 + 6) / 2) = (8 / 2; 4 / 2) = (4; 2).
Для вычисления длины отрезка воспользуемся формулой вычисления расстояния между двумя точками A (xa; ya) и B (xb; yb):
AB = √(( xb - xa)^2 + (yb - ya)^2).
Подставим значения точки А (1; -2) и М (4; 2) в формулу:
AM = √((4 - 1)^2 + (2 - (-2))^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5.
ответ: координаты вектора АС (4; 0), вектора ВА (-2; -8), координаты точки М (4; 2), длина отрезка АМ = 5.
Объяснение: