Укр:
Через точку перетину медіан трикутника АВС проведено відрізок EF паралельно стороні АВ. Знайдіть площу трикутника ABFE, якщо АВ=EF, а площа трикутника АВС = S
Рус:
Через точку пересечения медиан треугольника АВС проведен отрезок EF параллельно стороне АВ. Найдите площадь треугольника ABFE, если АВ = EF, а площадь треугольника АВС = S
Раз так вышло, что она биссектриса, то получается, что угол 120° она делит пополам. То есть 120° / 2 = 60.
Что ж, у нас получились 2 равных треугольника, рассмотрим правый треугольник.
Один из углов у него 90°, потому что высота. Второй угол у него 60°, потому что биссектриса. Отсюда можно найти третий его угол. Невообразимо сложными вычислениями ( 180 - ( 90 + 60 ) ) можно выяснить что третий угол будет 30°.
Так так, 30 градусов значит... Конечно же, все знают что против угла 30° лежит половина гипотенузы. А что у нас против 30° там? Посмотрим в задаче, ага... 12 см., значит гипотенуза 24 см.
А гипотенуза, в данном случае, как раз таки и есть боковая сторона треугольника.
ответ: 24.
Радиус описанной окружности вокруг правильного треугольника в основании AH, равен стороне, деленной на √3, то есть AH = 4; а высота - в полтора раза больше, то есть AM = 6;
AS^2 = AH^2 + SH^2 = 4^2 + 2^2*5 = 36; AS = 6 = AM; доказано.
б) тут посложнее, но не на много. Дело в том, что прямые эти взаимно перпендикулярны (AT - высота пирамиды). Поэтому надо найти расстояние от точки T до SB. Из пункта а) следует, что это расстояние в 2 раза меньше, чем от M до SB, то есть половина высоты (к гипотенузе) прямоугольного треугольника MSB c катетом BM = 2√3 и гипотенузой 6;
SM^2 = 6^2 - (2√3)^2 = 24; SM = 2√6;
высота MSB равна (2√3)*(2√6)/6 = 2√2; а нужное расстояние в 2 раза меньше, то есть просто √2;